Suppr超能文献

功能磁共振成像动态连接性的频率维度:静息态大脑中的网络连接、功能枢纽与整合

The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.

作者信息

Thompson William Hedley, Fransson Peter

机构信息

Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.

Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.

出版信息

Neuroimage. 2015 Nov 1;121:227-42. doi: 10.1016/j.neuroimage.2015.07.022. Epub 2015 Jul 11.

Abstract

The large-scale functional MRI connectome of the human brain is composed of multiple resting-state networks (RSNs). However, the network dynamics, such as integration and segregation between and within RSNs is largely unknown. To address this question we created high-resolution "frequency graphlets", connectivity matrices derived across the low-frequency spectrum of the BOLD fMRI resting-state signal (0.01-0.1 Hz) in a cohort of 100 subjects. We then apply and compare graph theoretical measures across the frequency graphlets. Our results show that the within- and between-network connectivity and presence of functional hubs shift as a function of frequency. Furthermore, we show that the small world network property peaks at different frequencies with corresponding spatial connectivity profiles. We conclude that the frequency dependence of the network connectivity and the spatial configuration of functional hubs suggest that the dynamics of large-scale network integration and segregation operate at different time scales.

摘要

人类大脑的大规模功能磁共振成像连接组由多个静息态网络(RSN)组成。然而,网络动力学,如RSN之间和内部的整合与分离,在很大程度上尚不清楚。为了解决这个问题,我们在100名受试者的队列中创建了高分辨率的“频率图元”,即从BOLD功能磁共振成像静息态信号的低频谱(0.01 - 0.1 Hz)导出的连接矩阵。然后,我们在频率图元上应用并比较图论测量方法。我们的结果表明,网络内部和网络之间的连接性以及功能枢纽的存在随频率而变化。此外,我们表明小世界网络属性在不同频率处达到峰值,并具有相应的空间连接模式。我们得出结论,网络连接性的频率依赖性和功能枢纽的空间配置表明,大规模网络整合和分离的动力学在不同的时间尺度上运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验