Romarowski Ana, Battistone María A, La Spina Florenza A, Puga Molina Lis del C, Luque Guillermina M, Vitale Alejandra M, Cuasnicu Patricia S, Visconti Pablo E, Krapf Darío, Buffone Mariano G
Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Department of Veterinary and Animal Science, Paige Labs, University of Massachusets, Amherst, MA 01003, USA.
Dev Biol. 2015 Sep 15;405(2):237-49. doi: 10.1016/j.ydbio.2015.07.008. Epub 2015 Jul 10.
Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.
哺乳动物精子必须在雌性生殖道中经过一系列统称为获能的生化修饰后,才能获得受精能力,进而发生顶体胞吐作用,这一过程对受精至关重要。肌动蛋白动力学在控制体细胞以及几种哺乳动物精子的胞吐过程中起着核心作用。在体细胞中,Rho家族的小GTP酶作为肌动蛋白动力学的主要调节因子广为人知。然而,这些蛋白在精子中的作用尚未得到详细研究。在本研究中,我们对Rho家族小GTP酶在小鼠精子获能过程中导致肌动蛋白聚合的信号通路中的参与情况进行了表征。我们观察到该信号级联反应中的大多数蛋白及其效应蛋白在小鼠精子中均有表达。cAMP/PKA、RhoA/C和Rac1信号通路的激活对于LIMK1在苏氨酸508位点磷酸化激活至关重要。在获能过程中,丝切蛋白的丝氨酸3位点会被LIMK1短暂磷酸化。用特异性抑制剂(BMS-3)抑制LIMK1会导致获能过程中肌动蛋白聚合水平降低,并且发生顶体胞吐作用的精子百分比显著下降。因此,我们首次证明了体细胞中肌动蛋白动力学的主要调节因子在小鼠精子中存在且具有活性。结合我们目前的研究结果与文献中的其他结果,我们提出了一个关于LIMK1和丝切蛋白如何控制小鼠精子顶体胞吐作用的工作模型。