Suppr超能文献

使用简化动力学模型分析细胞溶质中生成的过氧化氢的寿命和空间定位。

Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Free Radic Biol Med. 2015 Dec;89:47-53. doi: 10.1016/j.freeradbiomed.2015.07.009. Epub 2015 Jul 11.

Abstract

Hydrogen peroxide (H2O2) acts as a signaling molecule via its reactions with particular cysteine residues of certain proteins. Determining the roles of direct oxidation by H2O2 versus disulfide exchange reactions (i.e. relay reactions) between oxidized and reduced proteins of different identities is a current focus. Here, we use kinetic modeling to estimate the spatial and temporal localization of H2O2 and its most likely oxidation targets during a sudden increase in H2O2 above the basal level in the cytosol. We updated a previous redox kinetic model with recently measured parameters for HeLa cells and used the model to estimate the length and time scales of H2O2 diffusion through the cytosol before it is consumed by reaction. These estimates were on the order of one micron and one millisecond, respectively. We found oxidation of peroxiredoxin by H2O2 to be the dominant reaction in the network and that the overall concentration of reduced peroxiredoxin is not significantly affected by physiological increases in intracellular H2O2 concentration. We used this information to reduce the model from 22 parameters and reactions and 21 species to a single analytical equation with only one dependent variable, i.e. the concentration of H2O2, and reproduced results from the complete model. The reduced kinetic model will facilitate future efforts to progress beyond estimates and precisely quantify how reactions and diffusion jointly influence the distribution of H2O2 within cells.

摘要

过氧化氢 (H2O2) 通过与特定蛋白质中某些半胱氨酸残基的反应发挥信号分子的作用。确定 H2O2 直接氧化与不同身份的氧化和还原蛋白质之间的二硫键交换反应(即中继反应)的作用是当前的重点。在这里,我们使用动力学建模来估计细胞质中 H2O2 基础水平突然升高期间 H2O2 的时空定位及其最可能的氧化靶标。我们用最近测量的参数更新了以前的氧化还原动力学模型,并使用该模型来估计 H2O2 在被反应消耗之前通过细胞质扩散的长度和时间尺度。这些估计分别约为一微米和一毫秒。我们发现 H2O2 对过氧化物酶的氧化是网络中的主要反应,并且生理上增加细胞内 H2O2 浓度不会显著影响还原型过氧化物酶的总体浓度。我们利用这些信息将模型从 22 个参数、反应和 21 种物质减少到一个只有一个因变量的单个分析方程,即 H2O2 的浓度,并重现了完整模型的结果。简化的动力学模型将有助于未来超越估计的努力,并精确量化反应和扩散如何共同影响细胞内 H2O2 的分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验