Suppr超能文献

相似文献

1
Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4075-84. doi: 10.1073/pnas.1509845112. Epub 2015 Jul 13.
2
Juvenile skeletogenesis in anciently diverged sea urchin clades.
Dev Biol. 2015 Apr 1;400(1):148-58. doi: 10.1016/j.ydbio.2015.01.017. Epub 2015 Jan 30.
3
Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7202-E7211. doi: 10.1073/pnas.1612820113. Epub 2016 Nov 3.
4
Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
Dev Genes Evol. 2016 Jan;226(1):37-45. doi: 10.1007/s00427-015-0527-y. Epub 2016 Jan 19.
5
Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5870-5877. doi: 10.1073/pnas.1610603114.
7
Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13356-61. doi: 10.1073/pnas.2235868100. Epub 2003 Oct 31.
8
Architecture and evolution of the -regulatory system of the echinoderm gene.
Elife. 2022 Feb 25;11:e72834. doi: 10.7554/eLife.72834.
10
Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution.
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6091-6. doi: 10.1073/pnas.0801201105. Epub 2008 Apr 14.

引用本文的文献

1
The release of sexual conflict after sex loss is associated with evolutionary changes in gene expression.
Proc Biol Sci. 2025 Jan;292(2039):20242631. doi: 10.1098/rspb.2024.2631. Epub 2025 Jan 29.
2
Transcription of microRNAs is regulated by developmental signaling pathways and transcription factors.
Front Cell Dev Biol. 2024 Apr 24;12:1356589. doi: 10.3389/fcell.2024.1356589. eCollection 2024.
3
Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos.
iScience. 2023 Dec 2;27(1):108616. doi: 10.1016/j.isci.2023.108616. eCollection 2024 Jan 19.
8
Micromere formation and its evolutionary implications in the sea urchin.
Curr Top Dev Biol. 2022;146:211-238. doi: 10.1016/bs.ctdb.2021.10.008. Epub 2021 Dec 3.
9
10
Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo.
Development. 2021 Oct 1;148(19). doi: 10.1242/dev.198614. Epub 2021 Sep 27.

本文引用的文献

3
Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.
Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3758-63. doi: 10.1073/pnas.1418153112. Epub 2015 Feb 23.
4
Juvenile skeletogenesis in anciently diverged sea urchin clades.
Dev Biol. 2015 Apr 1;400(1):148-58. doi: 10.1016/j.ydbio.2015.01.017. Epub 2015 Jan 30.
5
Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo.
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):E5029-38. doi: 10.1073/pnas.1419141111. Epub 2014 Nov 10.
6
Specification to biomineralization: following a single cell type as it constructs a skeleton.
Integr Comp Biol. 2014 Oct;54(4):723-33. doi: 10.1093/icb/icu087. Epub 2014 Jul 9.
7
Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate.
Development. 2014 Jul;141(13):2669-79. doi: 10.1242/dev.104331. Epub 2014 Jun 12.
8
Branching out: origins of the sea urchin larval skeleton in development and evolution.
Genesis. 2014 Mar;52(3):173-85. doi: 10.1002/dvg.22756. Epub 2014 Mar 5.
9
The β-catenin destruction complex.
Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a007898. doi: 10.1101/cshperspect.a007898.
10
Predictive computation of genomic logic processing functions in embryonic development.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16434-42. doi: 10.1073/pnas.1207852109. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验