Erkenbrack Eric M, Davidson Eric H
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4075-84. doi: 10.1073/pnas.1509845112. Epub 2015 Jul 13.
Evolution of animal body plans occurs with changes in the encoded genomic programs that direct development, by alterations in the structure of encoded developmental gene-regulatory networks (GRNs). However, study of this most fundamental of evolutionary processes requires experimentally tractable, phylogenetically divergent organisms that differ morphologically while belonging to the same monophyletic clade, plus knowledge of the relevant GRNs operating in at least one of the species. These conditions are met in the divergent embryogenesis of the two extant, morphologically distinct, echinoid (sea urchin) subclasses, Euechinoidea and Cidaroidea, which diverged from a common late Paleozoic ancestor. Here we focus on striking differences in the mode of embryonic skeletogenesis in a euechinoid, the well-known model Strongylocentrotus purpuratus (Sp), vs. the cidaroid Eucidaris tribuloides (Et). At the level of descriptive embryology, skeletogenesis in Sp and Et has long been known to occur by distinct means. The complete GRN controlling this process is known for Sp. We carried out targeted functional analyses on Et skeletogenesis to identify the presence, or demonstrate the absence, of specific regulatory linkages and subcircuits key to the operation of the Sp skeletogenic GRN. Remarkably, most of the canonical design features of the Sp skeletogenic GRN that we examined are either missing or operate differently in Et. This work directly implies a dramatic reorganization of genomic regulatory circuitry concomitant with the divergence of the euechinoids, which began before the end-Permian extinction.
动物身体结构的演化伴随着编码基因组程序的变化而发生,这些程序通过改变编码的发育基因调控网络(GRN)的结构来指导发育。然而,对这一最基本的进化过程的研究需要实验上易于处理、系统发育上有差异、形态上不同但属于同一单系类群的生物,以及至少一种物种中运行的相关GRN的知识。在两个现存的、形态上不同的海胆亚纲真海胆亚纲和头帕海胆亚纲的不同胚胎发育过程中满足了这些条件,它们从一个共同的晚古生代祖先分化而来。在这里,我们关注真海胆亚纲中一种著名的模式生物紫球海胆(Sp)与头帕海胆亚纲的三棱刺冠海胆(Et)在胚胎骨骼发生模式上的显著差异。在描述性胚胎学层面,长期以来人们就知道Sp和Et的骨骼发生方式不同。控制这一过程的完整GRN在Sp中是已知的。我们对Et的骨骼发生进行了靶向功能分析,以确定Sp骨骼发生GRN运行关键的特定调控联系和子回路的存在或不存在。值得注意的是,我们研究的Sp骨骼发生GRN的大多数典型设计特征在Et中要么缺失,要么运行方式不同。这项工作直接意味着基因组调控电路伴随着真海胆亚纲的分化发生了巨大的重组,这种分化在二叠纪末大灭绝之前就开始了。