Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089;
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5870-5877. doi: 10.1073/pnas.1610603114.
Establishing a timeline for the evolution of novelties is a common, unifying goal at the intersection of evolutionary and developmental biology. Analyses of gene regulatory networks (GRNs) provide the ability to understand the underlying genetic and developmental mechanisms responsible for the origin of morphological structures both in the development of an individual and across entire evolutionary lineages. Accurately dating GRN novelties, thereby establishing a timeline for GRN evolution, is necessary to answer questions about the rate at which GRNs and their subcircuits evolve, and to tie their evolution to paleoenvironmental and paleoecological changes. Paleogenomics unites the fossil record and all aspects of deep time, with modern genomics and developmental biology to understand the evolution of genomes in evolutionary time. Recent work on the regulatory genomic basis of development in cidaroid echinoids, sand dollars, heart urchins, and other nonmodel echinoderms provides an ideal dataset with which to explore GRN evolution in a comparative framework. Using divergence time estimation and ancestral state reconstructions, we have determined the age of the double-negative gate (DNG), the subcircuit which specifies micromeres and skeletogenic cells in We have determined that the DNG has likely been used for euechinoid echinoid micromere specification since at least the Late Triassic. The innovation of the DNG thus predates the burst of post-Paleozoic echinoid morphological diversification that began in the Early Jurassic. Paleogenomics has wide applicability for the integration of deep time and molecular developmental data, and has wide utility in rigorously establishing timelines for GRN evolution.
建立新颖性进化的时间线是进化和发育生物学交叉领域的一个常见的统一目标。基因调控网络 (GRN) 的分析提供了理解负责个体发育和整个进化谱系中形态结构起源的潜在遗传和发育机制的能力。准确地确定 GRN 新颖性的时间,从而建立 GRN 进化的时间线,对于回答有关 GRN 和它们的子电路进化速度的问题以及将它们的进化与古环境和古生态变化联系起来是必要的。古基因组学将化石记录和所有的深层时间与现代基因组学和发育生物学结合起来,以了解进化时间内基因组的进化。最近关于栉水母、沙钱、海胆和其他非模式棘皮动物发育的调控基因组基础的研究工作提供了一个理想的数据集,可以在比较框架中探索 GRN 的进化。利用分歧时间估计和祖先状态重建,我们确定了双阴性门(DNG)的年龄,该子电路在海胆中指定了小细胞和骨骼生成细胞。我们已经确定,DNG 可能自晚三叠世以来就被用于真海胆的小细胞特化。因此,DNG 的创新发生在早侏罗世开始的后生海胆形态多样化的大爆发之前。古基因组学广泛适用于整合深层时间和分子发育数据,并广泛用于严格建立 GRN 进化的时间线。