Rangel Tonatiuh, Rignanese Gian-Marco, Olevano Valerio
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des Étoiles 8, bte L7.03.01, 1348 Louvain-la-Neuve, Belgium ; European Theoretical Spectroscopy Facility (ETSF) ; Present address: Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des Étoiles 8, bte L7.03.01, 1348 Louvain-la-Neuve, Belgium ; European Theoretical Spectroscopy Facility (ETSF).
Beilstein J Nanotechnol. 2015 Jun 2;6:1247-59. doi: 10.3762/bjnano.6.128. eCollection 2015.
Using benzenediamine and benzenedithiol molecular junctions as benchmarks, we investigate the widespread analysis of the quantum transport conductance in terms of the projected density of states (PDOS) onto molecular orbitals (MOs). We first consider two different methods for identifying the relevant MOs: (1) diagonalization of the Hamiltonian of the isolated molecule and (2) diagonalization of a submatrix of the junction Hamiltonian constructed by considering only basis elements localized on the molecule. We find that these two methods can lead to substantially different MOs and hence PDOS. Furthermore, within Method 1, the PDOS can differ depending on the isolated molecule chosen to represent the molecular junction (e.g., with or without dangling bonds); within Method 2, the PDOS depends on the chosen basis set. We show that these differences can be critical when the PDOS is used to provide a physical interpretation of the conductance (especially when its value is small, as it happens typically at zero bias). In this work, we propose a new approach in an attempt to reconcile the two traditional methods. Although some improvements were achieved, the main problems remain unsolved. Our results raise more general questions and doubts on a PDOS-based analysis of the conductance.
以苯二胺和苯二硫醇分子结为基准,我们研究了根据分子轨道(MO)上的投影态密度(PDOS)对量子输运电导进行的广泛分析。我们首先考虑两种识别相关MO的不同方法:(1)孤立分子哈密顿量的对角化,以及(2)仅考虑定域在分子上的基元所构建的结哈密顿量子矩阵的对角化。我们发现这两种方法会导致显著不同的MO,进而导致不同的PDOS。此外,在方法1中,PDOS会因所选用来代表分子结的孤立分子(例如,有无悬键)而异;在方法2中,PDOS取决于所选的基组。我们表明,当用PDOS对电导进行物理解释时(特别是当其值很小时,通常在零偏压下会出现这种情况),这些差异可能至关重要。在这项工作中,我们提出了一种新方法,试图调和这两种传统方法。虽然取得了一些改进,但主要问题仍未解决。我们的结果对基于PDOS的电导分析提出了更普遍的问题和质疑。