Söderling E, Pihlanto-Leppälä A
Department of Biochemistry, University of Turku, Finland.
Scand J Dent Res. 1989 Dec;97(6):511-9. doi: 10.1111/j.1600-0722.1989.tb00925.x.
The effect of successive cultivations in the presence of 6% xylitol on the uptake and expulsion of 14C-xylitol was studied using the cells of Streptococcus mutans 25175. Three sequential cultivations did not alter the growth inhibition percentage (approximately 50%) observed in the presence of 6% xylitol. The 14C-xylitol uptake experiments performed with growing and resting cells showed that both the uptake and the expulsion of xylitol were enhanced by xylitol-culturing. Both xylitol-cultured and resting control cells contained only one major labeled compound which was identified as 14C-xylitol 5-phosphate. The label subsequently was expelled from the cells as 14C-xylitol. These results indicate that S. mutans possesses an intracellular xylitol cycle and this cycle is regulated by adding xylitol to the growth medium.