Suppr超能文献

利用球员追踪数据探索美国职业篮球联赛中的比赛表现

Exploring Game Performance in the National Basketball Association Using Player Tracking Data.

作者信息

Sampaio Jaime, McGarry Tim, Calleja-González Julio, Jiménez Sáiz Sergio, Schelling I Del Alcázar Xavi, Balciunas Mindaugas

机构信息

Research Center in Sports Sciences, Health and Human Development, CIDESD, CreativeLab Research Community, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.

Faculty of Kinesiology, University of New Brunswick, Fredericton, Canada.

出版信息

PLoS One. 2015 Jul 14;10(7):e0132894. doi: 10.1371/journal.pone.0132894. eCollection 2015.

Abstract

Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.

摘要

近期的球员追踪技术为篮球比赛表现提供了新信息。本研究的目的是:(i)比较美国职业篮球联赛(NBA)全明星和非全明星篮球运动员的比赛表现;(ii)根据不同的比赛角色描述不同的篮球比赛表现概况。从2013 - 2014赛季所有常规赛(n = 1230场)获取存档数据。分析的变量包括场均得分、上场时间以及球员追踪系统记录的比赛动作。为实现第一个目标,使用描述性判别分析来分析每分钟的表现,以确定哪些变量最能预测全明星和非全明星球员类别。全明星球员在防守时速度较慢,但在肘区触球、防守篮板、近距离触球、近距离得分和急停跳投得分方面表现更好,这可能是由于优化后的注意力过程,而这是感知所需适当环境信息的关键。第二个目标通过k均值聚类分析来解决,目的是创建最大程度不同的表现概况分组。之后,进行描述性判别分析以确定哪些变量最能预测不同的比赛分组。结果确定了不同球员的表现概况,特别是与得分、传球、防守和全能比赛行为的比赛角色相关。教练组可以将这些信息应用于不同球员,同时考虑个体差异和功能变异性,以优化训练计划,从而提高个人和球队的比赛表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61e/4501835/eb8cf3972e1e/pone.0132894.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验