Wang Zi Zhuo, Xia Xiaoyu, Chen Qiaonan
Institute of Physical Education, Dongshin University, Naju, 58245, South Korea.
Sci Rep. 2025 Aug 2;15(1):28210. doi: 10.1038/s41598-025-12920-9.
This research proposes a novel multi-level data fusion method for analyzing collaborative dynamics in team sports using wearable sensor networks. We developed and validated this approach through controlled experiments with 40 semi-professional athletes across basketball and soccer scenarios. The multi-level fusion architecture integrates IMU, GPS, physiological, and positioning data through adaptive weight allocation and asynchronous alignment algorithms. Experimental validation demonstrated 8.6 dB improvement in signal quality and 42.3% enhancement in positional accuracy compared to single-source approaches. Cross-sport testing across basketball, soccer, volleyball, and handball showed consistent performance (84.2-91.4% accuracy) with real-time response times of 192-312ms. The developed collaborative dynamics indicator system revealed that temporal coordination parameters strongly correlate with team performance (r = 0.73), while four key metrics predict match outcomes with 73.6% accuracy. This methodology provides coaches and analysts with objective tools for quantifying previously subjective aspects of team coordination.
本研究提出了一种新颖的多层次数据融合方法,用于使用可穿戴传感器网络分析团队运动中的协作动态。我们通过对40名半职业运动员在篮球和足球场景下进行的对照实验,开发并验证了这种方法。多层次融合架构通过自适应权重分配和异步对齐算法,整合了惯性测量单元(IMU)、全球定位系统(GPS)、生理和定位数据。实验验证表明,与单源方法相比,信号质量提高了8.6分贝,定位精度提高了42.3%。在篮球、足球、排球和手球项目上的跨运动测试显示,该方法具有一致的性能(准确率为84.2%-91.4%),实时响应时间为192-312毫秒。所开发的协作动态指标系统表明,时间协调参数与团队表现密切相关(r = 0.73),而四个关键指标预测比赛结果的准确率为73.6%。这种方法为教练和分析师提供了客观工具,用于量化团队协作中以前主观的方面。