Suppr超能文献

多级数据融合可利用可穿戴传感器网络对团队运动进行协作动力学分析。

Multi-level data fusion enables collaborative dynamics analysis in team sports using wearable sensor networks.

作者信息

Wang Zi Zhuo, Xia Xiaoyu, Chen Qiaonan

机构信息

Institute of Physical Education, Dongshin University, Naju, 58245, South Korea.

出版信息

Sci Rep. 2025 Aug 2;15(1):28210. doi: 10.1038/s41598-025-12920-9.

Abstract

This research proposes a novel multi-level data fusion method for analyzing collaborative dynamics in team sports using wearable sensor networks. We developed and validated this approach through controlled experiments with 40 semi-professional athletes across basketball and soccer scenarios. The multi-level fusion architecture integrates IMU, GPS, physiological, and positioning data through adaptive weight allocation and asynchronous alignment algorithms. Experimental validation demonstrated 8.6 dB improvement in signal quality and 42.3% enhancement in positional accuracy compared to single-source approaches. Cross-sport testing across basketball, soccer, volleyball, and handball showed consistent performance (84.2-91.4% accuracy) with real-time response times of 192-312ms. The developed collaborative dynamics indicator system revealed that temporal coordination parameters strongly correlate with team performance (r = 0.73), while four key metrics predict match outcomes with 73.6% accuracy. This methodology provides coaches and analysts with objective tools for quantifying previously subjective aspects of team coordination.

摘要

本研究提出了一种新颖的多层次数据融合方法,用于使用可穿戴传感器网络分析团队运动中的协作动态。我们通过对40名半职业运动员在篮球和足球场景下进行的对照实验,开发并验证了这种方法。多层次融合架构通过自适应权重分配和异步对齐算法,整合了惯性测量单元(IMU)、全球定位系统(GPS)、生理和定位数据。实验验证表明,与单源方法相比,信号质量提高了8.6分贝,定位精度提高了42.3%。在篮球、足球、排球和手球项目上的跨运动测试显示,该方法具有一致的性能(准确率为84.2%-91.4%),实时响应时间为192-312毫秒。所开发的协作动态指标系统表明,时间协调参数与团队表现密切相关(r = 0.73),而四个关键指标预测比赛结果的准确率为73.6%。这种方法为教练和分析师提供了客观工具,用于量化团队协作中以前主观的方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验