Suppr超能文献

SufE的D74R替换改变了活性位点环动力学,以进一步增强SufE与SufS半胱氨酸脱硫酶的相互作用。

SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase.

作者信息

Dai Yuyuan, Kim Dokyong, Dong Guangchao, Busenlehner Laura S, Frantom Patrick A, Outten F Wayne

机构信息

†Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.

‡Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

出版信息

Biochemistry. 2015 Aug 11;54(31):4824-33. doi: 10.1021/acs.biochem.5b00663. Epub 2015 Jul 31.

Abstract

Many essential metalloproteins require iron-sulfur (Fe-S) cluster cofactors for their function. In vivo persulfide formation from l-cysteine is a key step in the biogenesis of Fe-S clusters in most organisms. In Escherichia coli, the SufS cysteine desulfurase mobilizes persulfide from l-cysteine via a PLP-dependent ping-pong reaction. SufS requires the SufE partner protein to transfer the persulfide to the SufB Fe-S cluster scaffold. Without SufE, the SufS enzyme fails to efficiently turn over and remains locked in the persulfide-bound state. Coordinated protein-protein interactions mediate sulfur transfer from SufS to SufE. Multiple studies have suggested that SufE must undergo a conformational change to extend its active site Cys loop during sulfur transfer from SufS. To test this putative model, we mutated SufE Asp74 to Arg (D74R) to increase the dynamics of the SufE Cys51 loop. Amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) analysis of SufE D74R revealed an increase in solvent accessibility and dynamics in the loop containing the active site Cys51 used to accept persulfide from SufS. Our results indicate that the mutant protein has a stronger binding affinity for SufS than that of wild-type SufE. In addition, SufE D74R can still enhance SufS desulfurase activity and did not show saturation at higher SufE D74R concentrations, unlike wild-type SufE. These results show that dynamic changes may shift SufE to a sulfur-acceptor state that interacts more strongly with SufS.

摘要

许多必需的金属蛋白需要铁硫(Fe-S)簇辅因子来发挥其功能。在大多数生物体中,由L-半胱氨酸在体内形成过硫化物是Fe-S簇生物合成的关键步骤。在大肠杆菌中,SufS半胱氨酸脱硫酶通过依赖于磷酸吡哆醛(PLP)的乒乓反应从L-半胱氨酸中动员过硫化物。SufS需要SufE伴侣蛋白将过硫化物转移到SufB Fe-S簇支架上。没有SufE,SufS酶就无法有效地周转,并保持锁定在过硫化物结合状态。协调的蛋白质-蛋白质相互作用介导了硫从SufS转移到SufE。多项研究表明,在硫从SufS转移过程中,SufE必须经历构象变化以延伸其活性位点的半胱氨酸环。为了验证这个假定的模型,我们将SufE的天冬氨酸74突变为精氨酸(D74R),以增加SufE半胱氨酸51环的动力学。对SufE D74R进行的酰胺氢/氘交换质谱(HDX-MS)分析显示,用于从SufS接受过硫化物的含有活性位点半胱氨酸51的环中,溶剂可及性和动力学增加。我们的结果表明,突变蛋白对SufS的结合亲和力比野生型SufE更强。此外,与野生型SufE不同,SufE D74R仍可增强SufS脱硫酶活性,并且在较高的SufE D74R浓度下未显示饱和。这些结果表明,动态变化可能会使SufE转变为与SufS相互作用更强的硫接受状态。

相似文献

1
SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase.
Biochemistry. 2015 Aug 11;54(31):4824-33. doi: 10.1021/acs.biochem.5b00663. Epub 2015 Jul 31.
2
Escherichia coli SufE sulfur transfer protein modulates the SufS cysteine desulfurase through allosteric conformational dynamics.
J Biol Chem. 2013 Dec 20;288(51):36189-200. doi: 10.1074/jbc.M113.525709. Epub 2013 Nov 6.
3
Mechanistic studies of the SufS-SufE cysteine desulfurase: evidence for sulfur transfer from SufS to SufE.
FEBS Lett. 2003 Dec 4;555(2):263-7. doi: 10.1016/s0014-5793(03)01244-4.
9
Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues.
J Biol Chem. 2019 Aug 16;294(33):12444-12458. doi: 10.1074/jbc.RA119.009471. Epub 2019 Jun 27.
10
Protected sulfur transfer reactions by the Escherichia coli Suf system.
Biochemistry. 2013 Jun 11;52(23):4089-96. doi: 10.1021/bi4001479. Epub 2013 May 30.

引用本文的文献

2
Persulfide Transfer to SufE Activates the Half-Sites Reactivity of the Cysteine Desulfurase SufS.
Biochemistry. 2024 Jun 18;63(12):1569-1577. doi: 10.1021/acs.biochem.4c00084. Epub 2024 May 30.
3
Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis.
Biophys Physicobiol. 2022 Feb 8;19:1-18. doi: 10.2142/biophysico.bppb-v19.0001. eCollection 2022.
4
Fe-S cluster biogenesis by the bacterial Suf pathway.
Biochim Biophys Acta Mol Cell Res. 2020 Nov;1867(11):118829. doi: 10.1016/j.bbamcr.2020.118829. Epub 2020 Aug 18.
5
Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues.
J Biol Chem. 2019 Aug 16;294(33):12444-12458. doi: 10.1074/jbc.RA119.009471. Epub 2019 Jun 27.
6
Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS.
Biochemistry. 2019 Feb 12;58(6):687-696. doi: 10.1021/acs.biochem.8b01122. Epub 2019 Jan 7.
7
Structural basis for the recognition of sulfur in phosphorothioated DNA.
Nat Commun. 2018 Nov 8;9(1):4689. doi: 10.1038/s41467-018-07093-1.
9
Iron-sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding.
J Biol Inorg Chem. 2018 Jun;23(4):581-596. doi: 10.1007/s00775-017-1527-3. Epub 2017 Dec 26.

本文引用的文献

1
Escherichia coli SufE sulfur transfer protein modulates the SufS cysteine desulfurase through allosteric conformational dynamics.
J Biol Chem. 2013 Dec 20;288(51):36189-200. doi: 10.1074/jbc.M113.525709. Epub 2013 Nov 6.
2
Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration.
J Biol Chem. 2013 Sep 20;288(38):27172-27180. doi: 10.1074/jbc.M113.480277. Epub 2013 Aug 2.
3
Protected sulfur transfer reactions by the Escherichia coli Suf system.
Biochemistry. 2013 Jun 11;52(23):4089-96. doi: 10.1021/bi4001479. Epub 2013 May 30.
4
The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU.
FEBS Lett. 2012 Nov 16;586(22):4016-22. doi: 10.1016/j.febslet.2012.10.001. Epub 2012 Oct 12.
5
An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli.
J Proteome Res. 2010 Dec 3;9(12):6740-51. doi: 10.1021/pr100920r. Epub 2010 Nov 2.
6
7
SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly.
J Biol Chem. 2007 May 4;282(18):13342-50. doi: 10.1074/jbc.M608555200. Epub 2007 Mar 9.
8
Expression, crystallization and preliminary crystallographic analysis of SufE (XAC2355) from Xanthomonas axonopodis pv. citri.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Mar 1;62(Pt 3):268-70. doi: 10.1107/S1744309106004945. Epub 2006 Feb 24.
10
Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry.
Arch Biochem Biophys. 2005 Jan 1;433(1):34-46. doi: 10.1016/j.abb.2004.09.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验