Suppr超能文献

高氧和高碳酸血症对血液氧合及R*₂的累积影响。

The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R*₂.

作者信息

Faraco Carlos C, Strother Megan K, Siero Jeroen C W, Arteaga Daniel F, Scott Allison O, Jordan Lori C, Donahue Manus J

机构信息

Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

J Cereb Blood Flow Metab. 2015 Dec;35(12):2032-42. doi: 10.1038/jcbfm.2015.168. Epub 2015 Jul 15.

Abstract

Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2*, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3 T; TE/TR=35/2,000 ms; spatial resolution=3 × 3 × 3.5 mm(3)) in healthy volunteers (n=12; age=29±4.1 years) breathing (i) room air (RA), (ii) normocapnic-hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic-normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic-hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood-water R2*, and tissue-water R2*. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA=0.011±0.007; HC-NO/RA=0.014±0.004; HC-HO/HO=0.020±0.008; and HC-HO/RA=0.035±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R2* are altered during hyperoxia.

摘要

脑血管反应性(CVR)加权的血氧水平依赖性功能磁共振成像(BOLD-MRI)实验经常与高氧联合使用。由于高氧和高碳酸血症之间存在复杂的相互作用,这些气体混合物对BOLD反应、血液和组织R2以及血液氧合的定量影响尚未完全了解。在这里,我们对12名健康志愿者(年龄=29±4.1岁)进行了BOLD成像(3T;TE/TR=35/2000ms;空间分辨率=3×3×3.5mm³),他们分别呼吸(i)室内空气(RA)、(ii)正常碳酸血症-高氧(95%O₂/5%N₂,HO)、(iii)高碳酸血症-正常氧(5%CO₂/21%O₂/74%N₂,HC-NO)和(iv)高碳酸血症-高氧(5%CO₂/95%O₂,HC-HO)。对于HC-HO,实验采用单独的RA和HO基线进行,以控制O₂的变化。采用自旋标记下的T2弛豫MRI计算基础静脉氧合。对信号变化进行量化,并应用建立的血流动力学模型量化血管活性血液氧合、血水R2和组织水R2*。在皮质中,BOLD分数变化(刺激/基线)为:HO/RA=0.011±0.007;HC-NO/RA=0.014±0.004;HC-HO/HO=0.020±0.008;HC-HO/RA=0.035±0.010;对于测得的基础静脉氧合水平0.632,这导致静脉血氧合水平分别为0.660(HO)、0.665(HC-NO)和0.712(HC-HO)。与HC-NO刺激相比,将HC-HO刺激与HO基线交替进行可提供较小但显著升高的BOLD反应。研究结果概述了几种气体刺激下血液氧合的差异,并提供了关于高氧期间高碳酸血症BOLD CVR和R2*如何改变的定量信息。

相似文献

1
The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R*₂.
J Cereb Blood Flow Metab. 2015 Dec;35(12):2032-42. doi: 10.1038/jcbfm.2015.168. Epub 2015 Jul 15.
2
A novel perspective to calibrate temporal delays in cerebrovascular reactivity using hypercapnic and hyperoxic respiratory challenges.
Neuroimage. 2019 Feb 15;187:154-165. doi: 10.1016/j.neuroimage.2017.11.044. Epub 2017 Dec 5.
4
Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults.
J Cereb Blood Flow Metab. 2022 May;42(5):861-875. doi: 10.1177/0271678X211064572. Epub 2021 Dec 1.
6
Vascular component analysis of hyperoxic and hypercapnic BOLD contrast.
Neuroimage. 2012 Feb 1;59(3):2401-12. doi: 10.1016/j.neuroimage.2011.08.110. Epub 2011 Sep 18.
7
Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli.
Neuroimage. 2011 Jan 15;54(2):1102-11. doi: 10.1016/j.neuroimage.2010.08.070. Epub 2010 Sep 7.
9
Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia.
Neuroimage. 2013 Dec;83:135-47. doi: 10.1016/j.neuroimage.2013.06.008. Epub 2013 Jun 13.
10
Cerebral blood volume changes during the BOLD post-stimulus undershoot measured with a combined normoxia/hyperoxia method.
Neuroimage. 2019 Jan 15;185:154-163. doi: 10.1016/j.neuroimage.2018.10.032. Epub 2018 Oct 10.

引用本文的文献

1
Cerebrovascular reactivity and response times describe recent ischaemic symptomatology in patients with moyamoya.
Brain Commun. 2024 Nov 4;7(1):fcae381. doi: 10.1093/braincomms/fcae381. eCollection 2025.
2
Choroid plexus vascular reactivity in moyamoya: Implications for choroid plexus regulation in ischemic stress.
J Neuroimaging. 2024 Jan-Feb;34(1):152-162. doi: 10.1111/jon.13161. Epub 2023 Oct 26.
3
Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults.
J Cereb Blood Flow Metab. 2022 May;42(5):861-875. doi: 10.1177/0271678X211064572. Epub 2021 Dec 1.
4
Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK-Channels in Rat Brain When Exposed to Intermittent Hypoxia.
Neuromolecular Med. 2022 Jun;24(2):155-168. doi: 10.1007/s12017-021-08672-0. Epub 2021 Jun 11.
6
Classifying intracranial stenosis disease severity from functional MRI data using machine learning.
J Cereb Blood Flow Metab. 2020 Apr;40(4):705-719. doi: 10.1177/0271678X19848098. Epub 2019 May 8.
8
Neuroimaging of vascular reserve in patients with cerebrovascular diseases.
Neuroimage. 2019 Feb 15;187:192-208. doi: 10.1016/j.neuroimage.2017.10.015. Epub 2017 Oct 12.
9
Benchmarking transverse spin relaxation based oxygenation measurements in the brain during hypercapnia and hypoxia.
J Magn Reson Imaging. 2017 Sep;46(3):704-714. doi: 10.1002/jmri.25582. Epub 2017 Mar 17.
10
Impact of vessel wall lesions and vascular stenoses on cerebrovascular reactivity in patients with intracranial stenotic disease.
J Magn Reson Imaging. 2017 Oct;46(4):1167-1176. doi: 10.1002/jmri.25602. Epub 2017 Jan 6.

本文引用的文献

2
Assessing cerebrovascular reactivity abnormality by comparison to a reference atlas.
J Cereb Blood Flow Metab. 2015 Feb;35(2):213-20. doi: 10.1038/jcbfm.2014.184. Epub 2014 Nov 12.
3
Reduced contralateral cerebrovascular reserve in patients with unilateral steno-occlusive disease.
Cerebrovasc Dis. 2014;38(2):94-100. doi: 10.1159/000362084. Epub 2014 Oct 2.
4
Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease.
Neuroimage. 2015 Jan 15;105:276-85. doi: 10.1016/j.neuroimage.2014.09.033. Epub 2014 Sep 26.
5
Routine clinical evaluation of cerebrovascular reserve capacity using carbogen in patients with intracranial stenosis.
Stroke. 2014 Aug;45(8):2335-41. doi: 10.1161/STROKEAHA.114.005975. Epub 2014 Jun 17.
7
Bolus arrival time and cerebral blood flow responses to hypercarbia.
J Cereb Blood Flow Metab. 2014 Jul;34(7):1243-52. doi: 10.1038/jcbfm.2014.81. Epub 2014 Apr 30.
9
In vivo assessment of human brainstem cerebrovascular function: a multi-inversion time pulsed arterial spin labelling study.
J Cereb Blood Flow Metab. 2014 Jun;34(6):956-63. doi: 10.1038/jcbfm.2014.39. Epub 2014 Mar 5.
10
Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging.
J Cereb Blood Flow Metab. 2013 Nov;33(11):1799-805. doi: 10.1038/jcbfm.2013.131. Epub 2013 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验