Arora Ankita, Sunbul Murat, Jäschke Andres
Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
Nucleic Acids Res. 2015 Dec 2;43(21):e144. doi: 10.1093/nar/gkv718. Epub 2015 Jul 14.
In order to gain deeper insight into the functions and dynamics of RNA in cells, the development of methods for imaging multiple RNAs simultaneously is of paramount importance. Here, we describe a modular approach to image RNA in living cells using an RNA aptamer that binds to dinitroaniline, an efficient general contact quencher. Dinitroaniline quenches the fluorescence of different fluorophores when directly conjugated to them via ethylene glycol linkers by forming a non-fluorescent intramolecular complex. Since the binding of the RNA aptamer to the quencher destroys the fluorophore-quencher complex, fluorescence increases dramatically upon binding. Using this principle, a series of fluorophores were turned into fluorescent turn-on probes by conjugating them to dinitroaniline. These probes ranged from fluorescein-dinitroaniline (green) to TexasRed-dinitroaniline (red) spanning across the visible spectrum. The dinitroaniline-binding aptamer (DNB) was generated by in vitro selection, and was found to bind all probes, leading to fluorescence increase in vitro and in living cells. When expressed in E. coli, the DNB aptamer could be labelled and visualized with different-coloured fluorophores and therefore it can be used as a genetically encoded tag to image target RNAs. Furthermore, combining contact-quenched fluorogenic probes with orthogonal DNB (the quencher-binding RNA aptamer) and SRB-2 aptamers (a fluorophore-binding RNA aptamer) allowed dual-colour imaging of two different fluorescence-enhancing RNA tags in living cells, opening new avenues for studying RNA co-localization and trafficking.
为了更深入地了解RNA在细胞中的功能和动态变化,同时成像多个RNA的方法的开发至关重要。在这里,我们描述了一种模块化方法,利用与二硝基苯胺(一种有效的通用接触猝灭剂)结合的RNA适体对活细胞中的RNA进行成像。当二硝基苯胺通过乙二醇接头直接与不同荧光团偶联时,会形成非荧光分子内复合物,从而猝灭其荧光。由于RNA适体与猝灭剂的结合会破坏荧光团-猝灭剂复合物,结合后荧光会显著增加。利用这一原理,通过将一系列荧光团与二硝基苯胺偶联,将它们转化为荧光开启探针。这些探针从荧光素-二硝基苯胺(绿色)到德克萨斯红-二硝基苯胺(红色),涵盖了整个可见光谱。二硝基苯胺结合适体(DNB)是通过体外筛选产生的,发现它能结合所有探针,导致体外和活细胞中的荧光增加。当在大肠杆菌中表达时,DNB适体可用不同颜色的荧光团进行标记和可视化,因此它可以用作基因编码标签来成像目标RNA。此外,将接触猝灭荧光探针与正交DNB(猝灭剂结合RNA适体)和SRB-2适体(荧光团结合RNA适体)相结合,可对活细胞中两种不同的荧光增强RNA标签进行双色成像,为研究RNA共定位和运输开辟了新途径。