Suppr超能文献

通过平面内铝肖特基结实现金刚石中单个氮空位中心的有源电荷态控制。

Active charge state control of single NV centres in diamond by in-plane Al-Schottky junctions.

作者信息

Schreyvogel C, Polyakov V, Wunderlich R, Meijer J, Nebel C E

机构信息

Fraunhofer-Institute for Applied Solid State Physics (IAF), 79108 Freiburg, Germany.

Department of Physics and Geoscience, University of Leipzig, 04103 Leipzig, Germany.

出版信息

Sci Rep. 2015 Jul 16;5:12160. doi: 10.1038/srep12160.

Abstract

In this paper, we demonstrate an active control of the charge state of a single nitrogen-vacancy (NV) centre by using in-plane Schottky-diode geometries with aluminium on hydrogen-terminated diamond surface. A switching between NV(+), NV(0) and NV(-) can be performed with the Al-gates which apply electric fields in the hole depletion region of the Schottky junction that induces a band bending modulation, thereby shifting the Fermi-level over NV charge transition levels. We simulated the in-plane band structure of the Schottky junction with the Software ATLAS by solving the drift-diffusion model and the Poisson-equation self-consistently. We simulated the IV-characteristics, calculated the width of the hole depletion region, the position of the Fermi-level intersection with the NV charge transition levels for different reverse bias voltages applied on the Al-gate. We can show that the field-induced band bending modulation in the depletion region causes a shifting of the Fermi-level over NV charge transition levels in such a way that the charge state of a single NV centre and thus its electrical and optical properties is tuned. In addition, the NV centre should be approx. 1-2 μm away from the Al-edge in order to be switched with moderate bias voltages.

摘要

在本文中,我们展示了通过在氢终止的金刚石表面使用带有铝的平面肖特基二极管几何结构来主动控制单个氮空位(NV)中心的电荷状态。利用铝栅极可以实现NV(+)、NV(0)和NV(-)之间的切换,这些铝栅极在肖特基结的空穴耗尽区施加电场,从而引起能带弯曲调制,进而使费米能级在NV电荷跃迁能级上移动。我们通过自洽求解漂移扩散模型和泊松方程,使用ATLAS软件模拟了肖特基结的平面能带结构。我们模拟了电流-电压特性,计算了空穴耗尽区的宽度、在铝栅极上施加不同反向偏置电压时费米能级与NV电荷跃迁能级的交点位置。我们可以证明,耗尽区中电场诱导的能带弯曲调制会使费米能级在NV电荷跃迁能级上移动,从而调节单个NV中心的电荷状态,进而调节其电学和光学性质。此外,NV中心应距离铝边缘约1-2μm,以便在中等偏置电压下进行切换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c993/4503995/1ab8df0eabf0/srep12160-f1.jpg

相似文献

3
Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions.
Beilstein J Nanotechnol. 2016 Nov 16;7:1727-1735. doi: 10.3762/bjnano.7.165. eCollection 2016.
4
Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures.
Nano Lett. 2014 May 14;14(5):2359-64. doi: 10.1021/nl4047619. Epub 2014 Apr 9.
5
Charge state manipulation of qubits in diamond.
Nat Commun. 2012 Mar 6;3:729. doi: 10.1038/ncomms1729.
6
Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3938-43. doi: 10.1073/pnas.1504451113. Epub 2016 Mar 24.
7
Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures.
Phys Rev Lett. 2013 Apr 19;110(16):167402. doi: 10.1103/PhysRevLett.110.167402. Epub 2013 Apr 16.
8
A Label-Free Diamond Microfluidic DNA Sensor Based on Active Nitrogen-Vacancy Center Charge State Control.
ACS Appl Mater Interfaces. 2021 Apr 28;13(16):18500-18510. doi: 10.1021/acsami.1c01118. Epub 2021 Apr 13.
9
Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond.
Phys Rev Lett. 2014 Mar 7;112(9):097603. doi: 10.1103/PhysRevLett.112.097603. Epub 2014 Mar 3.
10
Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning.
ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14732-9. doi: 10.1021/acsami.6b02036. Epub 2016 Jun 2.

引用本文的文献

1
Nanophotonic quantum sensing with engineered spin-optic coupling.
Nanophotonics. 2023 Jan 9;12(3):441-449. doi: 10.1515/nanoph-2022-0682. eCollection 2023 Feb.
2
Combination of XEOL, TR-XEOL and HB-T interferometer at the TPS 23A X-ray nanoprobe for exploring quantum materials.
J Synchrotron Radiat. 2024 Mar 1;31(Pt 2):252-259. doi: 10.1107/S1600577523010469. Epub 2024 Jan 19.
4
Controlled Surface Modification to Revive Shallow NV Centers.
Nano Lett. 2023 Apr 12;23(7):2563-2569. doi: 10.1021/acs.nanolett.2c04733. Epub 2023 Mar 16.
5
Monitoring spin coherence of single nitrogen-vacancy centers in nanodiamonds during pH changes in aqueous buffer solutions.
RSC Adv. 2019 Apr 23;9(22):12606-12614. doi: 10.1039/c9ra02282a. eCollection 2019 Apr 17.
6
A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers.
Nano Lett. 2021 Jan 13;21(1):868-874. doi: 10.1021/acs.nanolett.0c04712. Epub 2020 Dec 18.
7
Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions.
Beilstein J Nanotechnol. 2016 Nov 16;7:1727-1735. doi: 10.3762/bjnano.7.165. eCollection 2016.

本文引用的文献

1
Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures.
Nano Lett. 2014 May 14;14(5):2359-64. doi: 10.1021/nl4047619. Epub 2014 Apr 9.
2
High-fidelity spin entanglement using optimal control.
Nat Commun. 2014 Feb 28;5:3371. doi: 10.1038/ncomms4371.
4
Room-temperature quantum bit memory exceeding one second.
Science. 2012 Jun 8;336(6086):1283-6. doi: 10.1126/science.1220513.
5
Charge state manipulation of qubits in diamond.
Nat Commun. 2012 Mar 6;3:729. doi: 10.1038/ncomms1729.
6
Quantum computing with defects.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8513-8. doi: 10.1073/pnas.1003052107. Epub 2010 Apr 19.
7
Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity.
Opt Lett. 2009 Apr 1;34(7):1108-10. doi: 10.1364/ol.34.001108.
8
Functionalized fluorescent nanodiamonds for biomedical applications.
Nanomedicine (Lond). 2009 Jan;4(1):47-55. doi: 10.2217/17435889.4.1.47.
9
Nanoscale magnetic sensing with an individual electronic spin in diamond.
Nature. 2008 Oct 2;455(7213):644-7. doi: 10.1038/nature07279.
10
Photon antibunching in the fluorescence of individual color centers in diamond.
Opt Lett. 2000 Sep 1;25(17):1294-6. doi: 10.1364/ol.25.001294.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验