Vowinckel Jakob, Hartl Johannes, Butler Richard, Ralser Markus
Dept. of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, UK.
The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK.
Mitochondrion. 2015 Sep;24:77-86. doi: 10.1016/j.mito.2015.07.001. Epub 2015 Jul 13.
Mitochondria assemble into flexible networks. Here we present a simple method for the simultaneous quantification of mitochondrial membrane potential and network morphology that is based on computational co-localisation analysis of differentially imported fluorescent marker proteins. Established in, but not restricted to, Saccharomyces cerevisiae, MitoLoc reproducibly measures changes in membrane potential induced by the uncoupling agent CCCP, by oxidative stress, in respiratory deficient cells, and in ∆fzo1, ∆ref2, and ∆dnm1 mutants that possess fission and fusion defects. In combination with super-resolution images, MitoLoc uses 3D reconstruction to calculate six geometrical classifiers which differentiate network morphologies in ∆fzo1, ∆ref2, and ∆dnm1 mutants, under oxidative stress and in cells lacking mtDNA, even when the network is fragmented to a similar extent. We find that mitochondrial fission and a decline in membrane potential do regularly, but not necessarily, co-occur. MitoLoc hence simplifies the measurement of mitochondrial membrane potential in parallel to detect morphological changes in mitochondrial networks. Marker plasmid open-source software as well as the mathematical procedures are made openly available.
线粒体组装成灵活的网络。在此,我们提出一种简单的方法,用于同时定量线粒体膜电位和网络形态,该方法基于对差异导入的荧光标记蛋白进行计算共定位分析。MitoLoc方法建立于酿酒酵母,但不限于该物种,它可重复性地测量由解偶联剂CCCP、氧化应激、呼吸缺陷细胞以及具有裂变和融合缺陷的∆fzo1、∆ref2和∆dnm1突变体所诱导的膜电位变化。结合超分辨率图像,MitoLoc使用三维重建来计算六个几何分类器,这些分类器可区分∆fzo1、∆ref2和∆dnm1突变体、氧化应激条件下以及缺乏线粒体DNA的细胞中的网络形态,即使网络碎片化程度相似。我们发现线粒体裂变和膜电位下降通常但不一定同时发生。因此,MitoLoc简化了线粒体膜电位的测量,同时检测线粒体网络的形态变化。标记质粒开源软件以及数学程序均可公开获取。