Suppr超能文献

基于宽场荧光图像的酵母线粒体全自动形态分析。

A fully automated morphological analysis of yeast mitochondria from wide-field fluorescence images.

作者信息

Vojtová Jana, Čapek Martin, Willeit Sabrina, Groušl Tomáš, Chvalová Věra, Kutejová Eva, Pevala Vladimír, Valášek Leoš Shivaya, Rinnerthaler Mark

机构信息

Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.

Light Microscopy, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic.

出版信息

Sci Rep. 2024 Dec 3;14(1):30144. doi: 10.1038/s41598-024-81241-0.

Abstract

Mitochondrial morphology is an important parameter of cellular fitness. Although many approaches are available for assessing mitochondrial morphology in mammalian cells, only a few technically demanding and laborious methods are available for yeast cells. A robust, fully automated and user-friendly approach that would allow (1) segmentation of tubular and spherical mitochondria in the yeast Saccharomyces cerevisiae from conventional wide-field fluorescence images and (2) quantitative assessment of mitochondrial morphology is lacking. To address this, we compared Global thresholding segmentation with deep learning MitoSegNet segmentation, which we retrained on yeast cells. The deep learning model outperformed the Global thresholding segmentation. We applied it to segment mitochondria in strain lacking the MMI1/TMA19 gene encoding an ortholog of the human TCTP protein. Next, we performed a quantitative evaluation of segmented mitochondria by analyses available in ImageJ/Fiji and by MitoA analysis available in the MitoSegNet toolbox. By monitoring a wide range of morphological parameters, we described a novel mitochondrial phenotype of the mmi1Δ strain after its exposure to oxidative stress compared to that of the wild-type strain. The retrained deep learning model, all macros applied to run the analyses, as well as the detailed procedure are now available at https://github.com/LMCF-IMG/Morphology_Yeast_Mitochondria .

摘要

线粒体形态是细胞健康状况的一个重要参数。尽管有许多方法可用于评估哺乳动物细胞中的线粒体形态,但对于酵母细胞而言,仅有少数技术要求高且费力的方法。目前缺乏一种强大、全自动且用户友好的方法,该方法能够(1)从传统宽场荧光图像中分割出酿酒酵母中的管状和球形线粒体,以及(2)对线粒体形态进行定量评估。为了解决这一问题,我们将全局阈值分割与深度学习的MitoSegNet分割进行了比较,我们在酵母细胞上对MitoSegNet进行了重新训练。深度学习模型的表现优于全局阈值分割。我们将其应用于对缺乏编码人类TCTP蛋白直系同源物的MMI1/TMA19基因的菌株中的线粒体进行分割。接下来,我们通过ImageJ/Fiji中可用的分析方法以及MitoSegNet工具箱中可用的MitoA分析方法,对分割后的线粒体进行了定量评估。通过监测一系列形态学参数,我们描述了与野生型菌株相比,mmi1Δ菌株在暴露于氧化应激后的一种新的线粒体表型。经过重新训练的深度学习模型、用于运行分析的所有宏以及详细步骤现在可在https://github.com/LMCF-IMG/Morphology_Yeast_Mitochondria上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e310/11615301/ef3603504b91/41598_2024_81241_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验