Lee Juyong, Miller Benjamin T, Brooks Bernard R
Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892.
Protein Sci. 2016 Jan;25(1):231-43. doi: 10.1002/pro.2755. Epub 2015 Aug 20.
We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations.
我们提出了一种计算方案,用于在显式溶剂中计算结合自由能的pH依赖性。尽管pH很重要,但由于缺乏准确的建模方法,在结合自由能计算中通常忽略了pH的影响。为了解决这一局限性,我们使用恒定pH方法在给定pH下获得可滴定系统多个质子化状态的真实系综,并使用贝内特接受率(BAR)方法分析该系综。恒定pH方法基于包络分布采样(EDS)与哈密顿量副本交换方法(HREM)的结合,可产生可滴定系统的精确半巨正则系综。通过考虑将多个质子化状态约束为单个状态或从单个质子化状态释放为多个状态的自由能变化,可以获得pH依赖性结合自由能分布。我们对一个主客体系统进行了基准模拟:葫芦[7]脲(CB[7])和苯并咪唑(BZ)。BZ在形成复合物时经历了较大程度的pKa位移。使用三种不同的长程相互作用计算方案获得了基准系统的pH依赖性结合自由能分布:截断法、粒子网格埃瓦尔德(PME)法和各向同性周期求和(IPS)法。我们的方案成功捕捉到了结合自由能的pH依赖性行为。用PME法和IPS法获得的绝对结合自由能值是一致的,而截断法的结果相差2 kcal mol⁻¹ 。我们还讨论了用于恒定pH模拟的三种长程相互作用计算方法的特点。