Suppr超能文献

运用关系事件模型(REM)研究动物社交网络的时间动态。

Using the relational event model (REM) to investigate the temporal dynamics of animal social networks.

作者信息

Tranmer Mark, Marcum Christopher Steven, Morton F Blake, Croft Darren P, de Kort Selvino R

机构信息

Social Statistics, The University of Manchester, Manchester, U.K.

National Human Genome Research Institute, National Institutes of Health, Bethesda MD, U.S.A.

出版信息

Anim Behav. 2015 Mar 1;101:99-105. doi: 10.1016/j.anbehav.2014.12.005.

Abstract

Social dynamics are of fundamental importance in animal societies. Studies on nonhuman animal social systems often aggregate social interaction event data into a single network within a particular time frame. Analysis of the resulting network can provide a useful insight into the overall extent of interaction. However, through aggregation, information is lost about the order in which interactions occurred, and hence the sequences of actions over time. Many research hypotheses relate directly to the sequence of actions, such as the recency or rate of action, rather than to their overall volume or presence. Here, we demonstrate how the temporal structure of social interaction sequences can be quantified from disaggregated event data using the relational event model (REM). We first outline the REM, explaining why it is different from other models for longitudinal data, and how it can be used to model sequences of events unfolding in a network. We then discuss a case study on the European jackdaw, , in which temporal patterns of persistence and reciprocity of action are of interest, and present and discuss the results of a REM analysis of these data. One of the strengths of a REM analysis is its ability to take into account different ways in which data are collected. Having explained how to take into account the way in which the data were collected for the jackdaw study, we briefly discuss the application of the model to other studies. We provide details of how the models may be fitted in the R statistical software environment and outline some recent extensions to the REM framework.

摘要

社会动态在动物群体中至关重要。对非人类动物社会系统的研究通常会在特定时间框架内将社会互动事件数据汇总到一个单一网络中。对所得网络的分析可以为互动的整体程度提供有用的见解。然而,通过汇总,关于互动发生顺序以及随时间的行动序列的信息会丢失。许多研究假设直接与行动序列相关,例如行动的近期性或频率,而不是其总体数量或存在情况。在这里,我们展示了如何使用关系事件模型(REM)从分解的事件数据中量化社会互动序列的时间结构。我们首先概述REM,解释它与其他纵向数据模型的不同之处,以及它如何用于对网络中展开的事件序列进行建模。然后,我们讨论一个关于寒鸦的案例研究,其中行动的持续性和互惠性的时间模式是令人感兴趣的,并展示和讨论对这些数据进行REM分析的结果。REM分析的优势之一在于它能够考虑数据收集的不同方式。在解释了如何考虑寒鸦研究中数据的收集方式之后,我们简要讨论该模型在其他研究中的应用。我们提供了在R统计软件环境中拟合模型的详细信息,并概述了REM框架的一些最新扩展。

相似文献

5
From Ties to Events in the Analysis of Interorganizational Exchange Relations.组织间交换关系分析中的关联与事件
Organ Res Methods. 2023 Jul;26(3):524-565. doi: 10.1177/10944281211058469. Epub 2022 Mar 16.
6
Dynamic relational event modeling: Testing, exploring, and applying.动态关系事件建模:测试、探索和应用。
PLoS One. 2022 Aug 1;17(8):e0272309. doi: 10.1371/journal.pone.0272309. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验