Suppr超能文献

将杂草性状数据库与种群动态模型相结合可预测杂草群落的变化。

Combining a weed traits database with a population dynamics model predicts shifts in weed communities.

作者信息

Storkey J, Holst N, Bøjer O Q, Bigongiali F, Bocci G, Colbach N, Dorner Z, Riemens M M, Sartorato I, Sønderskov M, Verschwele A

机构信息

Agroecology Department, Rothamsted Research Harpenden, UK.

Department of Agroecology, Aarhus University Slagelse, Denmark.

出版信息

Weed Res. 2015 Apr;55(2):206-218. doi: 10.1111/wre.12126. Epub 2014 Nov 12.

Abstract

A functional approach to predicting shifts in weed floras in response to management or environmental change requires the combination of data on weed traits with analytical frameworks that capture the filtering effect of selection pressures on traits. A weed traits database (WTDB) was designed, populated and analysed, initially using data for 19 common European weeds, to begin to consolidate trait data in a single repository. The initial choice of traits was driven by the requirements of empirical models of weed population dynamics to identify correlations between traits and model parameters. These relationships were used to build a generic model, operating at the level of functional traits, to simulate the impact of increasing herbicide and fertiliser use on virtual weeds along gradients of seed weight and maximum height. The model generated 'fitness contours' (defined as population growth rates) within this trait space in different scenarios, onto which two sets of weed species, defined as common or declining in the UK, were mapped. The effect of increasing inputs on the weed flora was successfully simulated; 77% of common species were predicted to have stable or increasing populations under high fertiliser and herbicide use, in contrast with only 29% of the species that have declined. Future development of the WTDB will aim to increase the number of species covered, incorporate a wider range of traits and analyse intraspecific variability under contrasting management and environments.

摘要

一种预测杂草群落因管理或环境变化而发生变化的功能方法,需要将杂草性状数据与能够捕捉选择压力对性状过滤效应的分析框架相结合。设计、填充并分析了一个杂草性状数据库(WTDB),最初使用了19种常见欧洲杂草的数据,以开始在单个存储库中整合性状数据。性状的最初选择是由杂草种群动态实证模型的要求驱动的,以识别性状与模型参数之间的相关性。这些关系被用于构建一个在功能性状层面运行的通用模型,以模拟除草剂和化肥使用增加对沿种子重量和最大高度梯度的虚拟杂草的影响。该模型在不同情景下在这个性状空间中生成了“适合度等值线”(定义为种群增长率),并在其上绘制了两组杂草物种,定义为在英国常见或数量减少的物种。成功模拟了投入增加对杂草群落的影响;预计在高化肥和除草剂使用下,77%的常见物种种群将稳定或增加,相比之下,数量减少的物种只有29%。WTDB的未来发展旨在增加所涵盖的物种数量,纳入更广泛的性状,并分析在不同管理和环境下的种内变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feea/4480327/b72ad7d39d2b/wre0055-0206-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验