Jin Yaming, Lu Xiaomei, Zhang Junting, Kan Yi, Bo Huifeng, Huang Fengzhen, Xu Tingting, Du Yingchao, Xiao Shuyu, Zhu Jinsong
National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing 210093, P. R. China.
1] National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing 210093, P. R. China [2] Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Sci Rep. 2015 Jul 20;5:12237. doi: 10.1038/srep12237.
For rhombohedral multiferroelectrics, non-180° ferroelectric domain switching may induce ferroelastic and/or (anti-)ferromagnetic effect. So the determination and control of ferroelectric domain switching angles is crucial for nonvolatile information storage and exchange-coupled magnetoelectric devices. We try to study the intrinsic characters of polarization switching in BiFeO3 by introducing a special data processing method to determine the switching angle from 2D PFM (Piezoresponse Force Microscopy) images of randomly oriented samples. The response surface of BiFeO3 is first plotted using the piezoelectric tensor got from first principles calculations. Then from the normalized 2D PFM signals before and after switching, the switching angles of randomly oriented BiFeO3 grains can be determined through numerical calculations. In the polycrystalline BiFeO3 films, up to 34% of all switched area is that with original out-of-plane (OP) polarization parallel to the poling field. 71° polarization switching is more favorable, with the area percentages of 71°, 109° and 180° domain switching being about 42%, 29% and 29%, respectively. Our analysis further reveals that IP stress and charge migration have comparable effect on switching, and they are sensitive to the geometric arrangements. This work helps exploring a route to control polarization switching in BiFeO3, so as to realize desirable magnetoelectric coupling.
对于菱面体多铁性材料,非180°铁电畴切换可能会诱发铁弹性和/或(反)铁磁效应。因此,确定和控制铁电畴切换角度对于非易失性信息存储和交换耦合磁电装置至关重要。我们尝试通过引入一种特殊的数据处理方法来研究BiFeO3中极化切换的本征特性,该方法可从随机取向样品的二维压电响应力显微镜(PFM)图像中确定切换角度。首先利用第一性原理计算得到的压电张量绘制BiFeO3的响应面。然后,根据切换前后的归一化二维PFM信号,通过数值计算确定随机取向的BiFeO3晶粒的切换角度。在多晶BiFeO3薄膜中,所有切换区域中高达34%是原始面外(OP)极化与极化场平行的区域。71°极化切换更有利,71°、109°和180°畴切换的面积百分比分别约为42%、29%和29%。我们的分析进一步表明,面内应力和电荷迁移对切换的影响相当,并且它们对几何排列敏感。这项工作有助于探索控制BiFeO3中极化切换的途径,从而实现理想的磁电耦合。