Vangone Anna, Bonvin Alexandre Mjj
Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, Netherlands.
Elife. 2015 Jul 20;4:e07454. doi: 10.7554/eLife.07454.
Almost all critical functions in cells rely on specific protein-protein interactions. Understanding these is therefore crucial in the investigation of biological systems. Despite all past efforts, we still lack a thorough understanding of the energetics of association of proteins. Here, we introduce a new and simple approach to predict binding affinity based on functional and structural features of the biological system, namely the network of interfacial contacts. We assess its performance against a protein-protein binding affinity benchmark and show that both experimental methods used for affinity measurements and conformational changes have a strong impact on prediction accuracy. Using a subset of complexes with reliable experimental binding affinities and combining our contacts and contact-types-based model with recent observations on the role of the non-interacting surface in protein-protein interactions, we reach a high prediction accuracy for such a diverse dataset outperforming all other tested methods.
细胞内几乎所有关键功能都依赖于特定的蛋白质-蛋白质相互作用。因此,了解这些相互作用对于生物系统的研究至关重要。尽管过去付出了诸多努力,但我们仍缺乏对蛋白质结合能的全面理解。在此,我们引入一种全新且简单的方法,基于生物系统的功能和结构特征(即界面接触网络)来预测结合亲和力。我们对照蛋白质-蛋白质结合亲和力基准评估了该方法的性能,并表明用于亲和力测量的实验方法和构象变化对预测准确性都有很大影响。使用具有可靠实验结合亲和力的复合物子集,并将基于我们的接触和接触类型的模型与最近关于非相互作用表面在蛋白质-蛋白质相互作用中的作用的观察结果相结合,我们在如此多样化的数据集中达到了很高的预测准确性,超过了所有其他测试方法。