Suppr超能文献

力平衡可以解释斑马鱼早期发育过程中的局部和整体细胞运动。

A force balance can explain local and global cell movements during early zebrafish development.

作者信息

Chai Jack, Hamilton Andrea L, Krieg Michael, Buckley Craig D, Riedel-Kruse Ingmar H, Dunn Alexander R

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California.

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California.

出版信息

Biophys J. 2015 Jul 21;109(2):407-14. doi: 10.1016/j.bpj.2015.04.029.

Abstract

Embryonic morphogenesis takes place via a series of dramatic collective cell movements. The mechanisms that coordinate these intricate structural transformations across an entire organism are not well understood. In this study, we used gentle mechanical deformation of developing zebrafish embryos to probe the role of physical forces in generating long-range intercellular coordination during epiboly, the process in which the blastoderm spreads over the yolk cell. Geometric distortion of the embryo resulted in nonuniform blastoderm migration and realignment of the anterior-posterior (AP) axis, as defined by the locations at which the head and tail form, toward the new long axis of the embryo and away from the initial animal-vegetal axis defined by the starting location of the blastoderm. We found that local alterations in the rate of blastoderm migration correlated with the local geometry of the embryo. Chemical disruption of the contractile ring of actin and myosin immediately vegetal to the blastoderm margin via Ca(2+) reduction or treatment with blebbistatin restored uniform migration and eliminated AP axis reorientation in mechanically deformed embryos; it also resulted in cellular disorganization at the blastoderm margin. Our results support a model in which tension generated by the contractile actomyosin ring coordinates epiboly on both the organismal and cellular scales. Our observations likewise suggest that the AP axis is distinct from the initial animal-vegetal axis in zebrafish.

摘要

胚胎形态发生通过一系列剧烈的集体细胞运动发生。协调整个生物体中这些复杂结构转变的机制尚不清楚。在本研究中,我们对发育中的斑马鱼胚胎进行了轻柔的机械变形,以探究物理力在卵黄外包过程(即胚盘在卵黄细胞上扩散的过程)中产生长距离细胞间协调作用的角色。胚胎的几何变形导致胚盘迁移不均匀,以及前后(AP)轴重新排列,AP轴由头和尾形成的位置所定义,朝着胚胎的新长轴方向移动,并远离由胚盘起始位置所定义的初始动物-植物轴。我们发现胚盘迁移速率的局部变化与胚胎的局部几何形状相关。通过降低钙离子浓度或使用肌球蛋白抑制剂blebbistatin对胚盘边缘紧邻的肌动蛋白和肌球蛋白收缩环进行化学破坏,可恢复机械变形胚胎中的均匀迁移并消除AP轴重新定向;这也导致了胚盘边缘的细胞紊乱。我们的结果支持一个模型,即收缩性肌动球蛋白环产生的张力在生物体和细胞尺度上协调卵黄外包过程。我们的观察同样表明,斑马鱼中的AP轴与初始动物-植物轴不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3695/4621544/134302d44ca1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验