Boccaccio Antonio, Lamberti Luciano, Papi Massimiliano, De Spirito Marco, Pappalettere Carmine
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy.
Nanotechnology. 2015 Aug 14;26(32):325701. doi: 10.1088/0957-4484/26/32/325701. Epub 2015 Jul 23.
Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.
原子力显微镜(AFM)纳米压痕非常适合对软材料进行纳米和微观尺度的力学表征。尽管构成软物质的聚合物网络的结构响应取决于聚合物链相对滑动引起的粘性效应,但基于AFM的表征中通常的假设是试样表现为纯弹性材料,粘性力可忽略不计。然而,对于AFM探针的每种几何构型,都会有一个极限压痕速率,超过该速率就必须考虑粘性效应才能正确确定力学性能。对钝圆锥AFM探针的12种几何构型进行的参数化有限元研究(总体而言,该研究包括约200次有限元分析)使我们能够确定每种构型的极限压痕速率。所选的探针尺寸涵盖了市售产品,并考虑了连续测量导致的探针几何形状变化。纳米压痕速率涵盖了在AFM对软物质进行生物测量时设定的典型实验条件。在尖端更尖锐的情况下,粘性效应似乎更显著。这意味着,如果没有关于样品粘度的定量数据,使用圆形压头并在极限压痕速率以下进行实验将使力学性能测定中的误差最小化。