Suppr超能文献

用于低密度氧化锌纳米线溶液生长的铬抑制和尺寸选择金纳米团簇催化

Chromium inhibition and size-selected Au nanocluster catalysis for the solution growth of low-density ZnO nanowires.

作者信息

Errico Vito, Arrabito Giuseppe, Plant Simon R, Medaglia Pier Gianni, Palmer Richard E, Falconi Christian

机构信息

Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.

Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.

出版信息

Sci Rep. 2015 Jul 23;5:12336. doi: 10.1038/srep12336.

Abstract

The wet chemical synthesis of nanostructures has many crucial advantages over high-temperature methods, including simplicity, low-cost, and deposition on almost arbitrary substrates. Nevertheless, the density-controlled solution growth of nanowires still remains a challenge, especially at the low densities (e.g. 1 to 10 nanowires/100 μm(2)) required, as an example, for intracellular analyses. Here, we demonstrate the solution-growth of ZnO nanowires using a thin chromium film as a nucleation inhibitor and Au size-selected nanoclusters (SSNCs) as catalytic particles for which the density and, in contrast with previous reports, size can be accurately controlled. Our results also provide evidence that the enhanced ZnO hetero-nucleation is dominated by Au SSNCs catalysis rather than by layer adaptation. The proposed approach only uses low temperatures (≤70 °C) and is therefore suitable for any substrate, including printed circuit boards (PCBs) and the plastic substrates which are routinely used for cell cultures. As a proof-of-concept we report the density-controlled synthesis of ZnO nanowires on flexible PCBs, thus opening the way to assembling compact intracellular-analysis systems, including nanowires, electronics, and microfluidics, on a single substrate.

摘要

与高温方法相比,纳米结构的湿化学合成具有许多关键优势,包括操作简单、成本低以及能够沉积在几乎任何衬底上。然而,纳米线的密度控制溶液生长仍然是一个挑战,特别是在例如细胞内分析所需的低密度(例如1至10根纳米线/100μm²)情况下。在此,我们展示了使用薄铬膜作为成核抑制剂和金尺寸选择纳米团簇(SSNCs)作为催化颗粒来进行ZnO纳米线的溶液生长,其中金尺寸选择纳米团簇的密度以及与先前报道不同的尺寸都能够被精确控制。我们的结果还提供了证据,表明增强的ZnO异质成核主要由金尺寸选择纳米团簇催化而非层适配主导。所提出的方法仅使用低温(≤70°C),因此适用于任何衬底,包括印刷电路板(PCBs)以及常用于细胞培养的塑料衬底。作为概念验证,我们报告了在柔性印刷电路板上进行密度控制的ZnO纳米线合成,从而为在单个衬底上组装包括纳米线、电子器件和微流体的紧凑型细胞内分析系统开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b620/4511950/d51892fadfb3/srep12336-f1.jpg

相似文献

2
Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures.
Nanoscale Res Lett. 2011 Oct 26;6(1):566. doi: 10.1186/1556-276X-6-566.
4
The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures.
Nanotechnology. 2014 May 30;25(21):215601. doi: 10.1088/0957-4484/25/21/215601. Epub 2014 May 2.
6
Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
Nanotechnology. 2009 Oct 7;20(40):405603. doi: 10.1088/0957-4484/20/40/405603. Epub 2009 Sep 8.
7
Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior.
Nanotechnology. 2009 Feb 25;20(8):085601. doi: 10.1088/0957-4484/20/8/085601. Epub 2009 Feb 2.
8
Density-controlled electrochemical synthesis of ZnO nanowire arrays using nanotextured cathode.
Nanotechnology. 2024 Feb 15;35(18). doi: 10.1088/1361-6528/ad2018.
9
Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method.
Nanoscale. 2013 Apr 21;5(8):3505-13. doi: 10.1039/c3nr34013a. Epub 2013 Mar 14.

引用本文的文献

1
Photothermal Laser Printing of Sub-Micrometer Crystalline ZnO Structures.
Adv Sci (Weinh). 2025 Jan;12(4):e2410771. doi: 10.1002/advs.202410771. Epub 2024 Dec 4.
2
ZnO Nanowires for Feedback-Assisted Tuning of Electromechanical Resonators.
ACS Appl Nano Mater. 2022 Oct 28;5(10):15817-15825. doi: 10.1021/acsanm.2c03963. Epub 2022 Sep 28.
3
Bonding properties of a superatom system with high- elements: insights from energy decomposition analysis.
RSC Adv. 2020 Apr 9;10(25):14482-14486. doi: 10.1039/d0ra01644f. eCollection 2020 Apr 8.
4
Influence of Colloidal Au on the Growth of ZnO Nanostructures.
Nanomaterials (Basel). 2021 Mar 29;11(4):870. doi: 10.3390/nano11040870.
5
Aqueous Processed Biopolymer Interfaces for Single-Cell Microarrays.
ACS Biomater Sci Eng. 2020 May 11;6(5):3174-3186. doi: 10.1021/acsbiomaterials.9b01871. Epub 2020 Apr 17.
6
On the Interaction between 1D Materials and Living Cells.
J Funct Biomater. 2020 Jun 10;11(2):40. doi: 10.3390/jfb11020040.
8
Towards the geometric structure of small supported Au clusters on Si.
Sci Rep. 2018 Aug 17;8(1):12371. doi: 10.1038/s41598-018-30750-w.

本文引用的文献

2
Exploring arrays of vertical one-dimensional nanostructures for cellular investigations.
Nanotechnology. 2014 Sep 12;25(36):362001. doi: 10.1088/0957-4484/25/36/362001. Epub 2014 Aug 18.
3
Quantification of nanowire penetration into living cells.
Nat Commun. 2014 Apr 7;5:3613. doi: 10.1038/ncomms4613.
4
USB-driven microfluidic chips on printed circuit boards.
Lab Chip. 2014 Mar 7;14(5):860-4. doi: 10.1039/c3lc51155c.
5
Mechanical model of vertical nanowire cell penetration.
Nano Lett. 2013;13(12):6002-8. doi: 10.1021/nl403201a. Epub 2013 Nov 20.
7
Probing enzymatic activity inside living cells using a nanowire-cell "sandwich" assay.
Nano Lett. 2013 Jan 9;13(1):153-8. doi: 10.1021/nl3037068. Epub 2012 Dec 20.
8
One-Step Hydrothermal Synthesis of Comb-Like ZnO Nanostructures.
Cryst Growth Des. 2012 Oct 3;12(10):4829-4833. doi: 10.1021/cg3005773. Epub 2012 Sep 4.
9
Determination of the ground-state atomic structures of size-selected au nanoclusters by electron-beam-induced transformation.
Phys Rev Lett. 2012 Jun 15;108(24):245502. doi: 10.1103/PhysRevLett.108.245502. Epub 2012 Jun 13.
10
Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis.
Nat Mater. 2011 Jul 10;10(8):596-601. doi: 10.1038/nmat3069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验