Steurer Matthias, Somers Paul, Kraft Kristian, Grünewald Lukas, Kraus Steven, Feist Florian, Weinert Bastian, Müller Erich, Dehnen Stefanie, Feldmann Claus, Eggeler Yolita M, Barner-Kowollik Christopher, Wegener Martin
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
Adv Sci (Weinh). 2025 Jan;12(4):e2410771. doi: 10.1002/advs.202410771. Epub 2024 Dec 4.
During light-driven 3D additive manufacturing, an object represented in digital form is initially translated into a spatial distribution of light intensity (sequentially or in parallel), which then results in a spatial material distribution. To date, this process typically proceeds by photoexcitation of small functional molecules, leading to photochemically induced crosslinking of soft materials. Alternatively, thermal triggers can be employed, yet thermal processes are often slow and provide only low spatial localization. Nevertheless, sub-micrometer ZnO structures for functional microelectronic devices have recently been laser-printed. Herein, the photothermal laser-printing of ZnO is advanced by i) introducing single-crystalline rather than amorphous sub-micrometer ZnO shapes that crystallize in the hexagonal ZnO wurtzite structure, ii) employing dimethyl sulfoxide (DMSO) instead of water, enabling higher local process temperatures without micro-bubble formation, and iii) using substrates tailored for light absorption and heat management, resolving the challenge of light to heat conversion. Finally, the herein-demonstrated ZnO printing requires no post-processing and is a cleanroom-free technique for the fabrication of crystalline semiconductors.
在光驱动三维增材制造过程中,以数字形式表示的物体首先被转换为光强的空间分布(顺序或并行),然后产生空间材料分布。迄今为止,该过程通常通过小功能分子的光激发来进行,从而导致软材料的光化学诱导交联。或者,可以采用热触发方式,然而热过程通常较慢且仅提供低空间定位。尽管如此,用于功能性微电子器件的亚微米级氧化锌结构最近已通过激光打印而成。在此,氧化锌的光热激光打印技术得到了改进:一是引入了结晶为六方纤锌矿结构的单晶而非非晶亚微米级氧化锌形状;二是使用二甲基亚砜(DMSO)而非水,从而能够在不形成微气泡的情况下实现更高的局部加工温度;三是使用为光吸收和热管理量身定制的基板,解决了光热转换的难题。最后,本文所展示的氧化锌打印无需后处理,是一种用于制造晶体半导体的无洁净室技术。