Chun Young Wook, Balikov Daniel A, Feaster Tromondae K, Williams Charles H, Sheng Calvin C, Lee Jung-Bok, Boire Timothy C, Neely M Diana, Bellan Leon M, Ess Kevin C, Bowman Aaron B, Sung Hak-Joon, Hong Charles C
Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
Biomaterials. 2015 Oct;67:52-64. doi: 10.1016/j.biomaterials.2015.07.004. Epub 2015 Jul 14.
Cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs) hold great promise for modeling human heart diseases. However, iPSC-CMs studied to date resemble immature embryonic myocytes and therefore do not adequately recapitulate native adult cardiomyocyte phenotypes. Since extracellular matrix plays an essential role in heart development and maturation in vivo, we sought to develop a synthetic culture matrix that could enhance functional maturation of iPSC-CMs in vitro. In this study, we employed a library of combinatorial polymers comprising of three functional subunits - poly-ε-caprolacton (PCL), polyethylene glycol (PEG), and carboxylated PCL (cPCL) - as synthetic substrates for culturing human iPSC-CMs. Of these, iPSC-CMs cultured on 4%PEG-96%PCL (each % indicates the corresponding molar ratio) exhibit the greatest contractility and mitochondrial function. These functional enhancements are associated with increased expression of cardiac myosin light chain-2v, cardiac troponin I and integrin alpha-7. Importantly, iPSC-CMs cultured on 4%PEG-96%PCL demonstrate troponin I (TnI) isoform switch from the fetal slow skeletal TnI (ssTnI) to the postnatal cardiac TnI (cTnI), the first report of such transition in vitro. Finally, culturing iPSC-CMs on 4%PEG-96%PCL also significantly increased expression of genes encoding intermediate filaments known to transduce integrin-mediated mechanical signals to the myofilaments. In summary, our study demonstrates that synthetic culture matrices engineered from combinatorial polymers can be utilized to promote in vitro maturation of human iPSC-CMs through the engagement of critical matrix-integrin interactions.
源自人诱导多能干细胞的心肌细胞(iPSC-CMs)在人类心脏病建模方面具有巨大潜力。然而,迄今为止所研究的iPSC-CMs类似于未成熟的胚胎心肌细胞,因此不能充分重现天然成年心肌细胞的表型。由于细胞外基质在体内心脏发育和成熟过程中起着至关重要的作用,我们试图开发一种合成培养基质,以增强iPSC-CMs在体外的功能成熟。在本研究中,我们使用了一个由三种功能亚基组成的组合聚合物文库——聚ε-己内酯(PCL)、聚乙二醇(PEG)和羧化PCL(cPCL)——作为培养人iPSC-CMs的合成底物。其中,在4%PEG-96%PCL(每个%表示相应的摩尔比)上培养的iPSC-CMs表现出最大的收缩性和线粒体功能。这些功能增强与心肌肌球蛋白轻链-2v、心肌肌钙蛋白I和整合素α-7的表达增加有关。重要的是,在4%PEG-96%PCL上培养的iPSC-CMs显示肌钙蛋白I(TnI)亚型从胎儿慢速骨骼肌TnI(ssTnI)转变为出生后心脏TnI(cTnI),这是此类转变在体外的首次报道。最后,在4%PEG-96%PCL上培养iPSC-CMs也显著增加了编码中间丝的基因的表达,已知中间丝可将整合素介导的机械信号传递至肌丝。总之,我们的研究表明,由组合聚合物设计的合成培养基质可通过关键的基质-整合素相互作用促进人iPSC-CMs的体外成熟。