Gund Girish S, Dubal Deepak P, Chodankar Nilesh R, Cho Jun Y, Gomez-Romero Pedro, Park Chan, Lokhande Chandrakant D
1] Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, - 416004 (M.S), India [2] Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea [3] Catalan Institute of Nanoscience and Nanotechnology, CIN2, ICN2 (CSIC-ICN), Campus UAB, E-08193 Bellaterra (Barcelona), Spain.
Catalan Institute of Nanoscience and Nanotechnology, CIN2, ICN2 (CSIC-ICN), Campus UAB, E-08193 Bellaterra (Barcelona), Spain.
Sci Rep. 2015 Jul 24;5:12454. doi: 10.1038/srep12454.
The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg(-1), about 2-fold of higher energy density (41.8 Wh kg(-1)) than symmetric SC and excellent mechanical flexibility. Furthermore, the "real-life" demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.
为了分别在高柔韧性不锈钢片上制备具有精细优化纳米结构的氧化锰(MnO₂)和氧化铁(Fe₂O₃)薄膜,采用了简便且经济的电化学以及连续离子层吸附与反应(SILAR)方法。组装了以Na₂SO₄/羧甲基纤维素(CMC)凝胶作为隔膜和电解质的纳米结构(MnO₂为纳米片,Fe₂O₃为纳米颗粒)电极的对称和不对称柔性固态超级电容器(FSS-SC)。以MnO₂作为正负极来制造对称超级电容器,而不对称超级电容器则通过以MnO₂作为正极、Fe₂O₃作为负极来组装。此外,还系统地研究了对称和不对称超级电容器的电化学特性。结果证实,所制备的对称和不对称FSS-SC分别在0 - 1 V和0 - 2 V的电压窗口内具有出色的可逆性,并且具有良好的循环稳定性(对于3000次循环伏安循环,分别为83%和91%)。此外,不对称超级电容器显示出92 Fg⁻¹的最大比电容,其能量密度比对称超级电容器高约2倍(41.8 Wh kg⁻¹),并且具有出色的机械柔韧性。此外,所制备的超级电容器在实际应用中的演示向SUK小组证实,不对称超级电容器的能量密度比对称超级电容器高2倍。