Lao Zheng, Kelly Catherine J, Yang Xiang-Yang, Jenkins W Timothy, Toorens Erik, Ganguly Tapan, Evans Sydney M, Koch Cameron J
University of Pennsylvania, Perelman School of Medicine, Dept Radiation Oncology, Philadelphia, Pennsylvania, United States of America; Fudan University, Eye & ENT Hospital, Dept Radiation Oncology, Shanghai, China.
Oxford University, Gray Institute for Radiation Oncology, Oxford, United Kingdom.
PLoS One. 2015 Jul 24;10(7):e0133895. doi: 10.1371/journal.pone.0133895. eCollection 2015.
Diagnostic and prognostic indicators are key components to achieve the goal of personalized cancer therapy. Two distinct approaches to this goal include predicting response by genetic analysis and direct testing of possible therapies using cultures derived from biopsy specimens. Optimally, the latter method requires a rapid assessment, but growing xenograft tumors or developing patient-derived cell lines can involve a great deal of time and expense. Furthermore, tumor cells have much different responses when grown in 2D versus 3D tissue environments. Using a modification of existing methods, we show that it is possible to make tumor-fragment (TF) spheroids in only 2-3 days. TF spheroids appear to closely model characteristics of the original tumor and may be used to assess critical therapy-modulating features of the microenvironment such as hypoxia. A similar method allows the reproducible development of spheroids from mixed tumor cells and fibroblasts (mixed-cell spheroids). Prior literature reports have shown highly variable development and properties of mixed-cell spheroids and this has hampered the detailed study of how individual tumor-cell components interact. In this study, we illustrate this approach and describe similarities and differences using two tumor models (U87 glioma and SQ20B squamous-cell carcinoma) with supporting data from additional cell lines. We show that U87 and SQ20B spheroids predict a key microenvironmental factor in tumors (hypoxia) and that SQ20B cells and spheroids generate similar numbers of microvesicles. We also present pilot data for miRNA expression under conditions of cells, tumors, and TF spheroids.
诊断和预后指标是实现个性化癌症治疗目标的关键组成部分。实现这一目标的两种不同方法包括通过基因分析预测反应以及使用从活检标本中获取的培养物直接测试可能的治疗方法。理想情况下,后一种方法需要快速评估,但培养异种移植肿瘤或建立患者来源的细胞系可能需要大量时间和费用。此外,肿瘤细胞在二维与三维组织环境中生长时的反应有很大不同。通过对现有方法进行改进,我们表明仅用2至3天就有可能制作出肿瘤碎片(TF)球体。TF球体似乎能紧密模拟原始肿瘤的特征,可用于评估微环境的关键治疗调节特征,如缺氧情况。一种类似的方法可从混合肿瘤细胞和成纤维细胞中可重复地培养出球体(混合细胞球体)。先前的文献报道显示混合细胞球体的培养和特性差异很大,这阻碍了对单个肿瘤细胞成分如何相互作用的详细研究。在本研究中,我们用两种肿瘤模型(U87胶质瘤和SQ20B鳞状细胞癌)举例说明了这种方法,并描述了其异同,还有来自其他细胞系的支持数据。我们表明U87和SQ20B球体可预测肿瘤中的一个关键微环境因素(缺氧),并且SQ20B细胞和球体产生的微泡数量相似。我们还展示了细胞、肿瘤和TF球体条件下miRNA表达的初步数据。