Lam Julien, Amans David, Dujardin Christophe, Ledoux Gilles, Allouche Abdul-Rahman
Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS, Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France.
J Phys Chem A. 2015 Aug 20;119(33):8944-9. doi: 10.1021/acs.jpca.5b05829. Epub 2015 Aug 7.
A predictive model for nanoparticle nucleation has not yet been successfully achieved. Classical nucleation theory fails because the atomistic nature of the seed has to be considered. Indeed, geometrical structure as well as stoichiometry do not always match the bulk values. We present a fully microscopic approach based on a first-principle study of aluminum oxide clusters. We calculated stable structures of AlxOy and their associated thermodynamic properties. From these data, the chemical composition of a gas composed of aluminum and oxygen atoms can be calculated as a function of temperature, pressure, and aluminum to oxygen ratio. We demonstrate the accuracy of this approach in reproducing experimental results obtained with time-resolved spectroscopy of a laser-induced plasma from an Al2O3 target. We thus extended the calculation to lower temperatures, i.e., longer time scales, to propose a scenario of composition gas evolution leading to the first alumina seeds.
尚未成功实现纳米颗粒成核的预测模型。经典成核理论失效,因为必须考虑晶种的原子性质。实际上,几何结构以及化学计量并不总是与体相值匹配。我们基于对氧化铝团簇的第一性原理研究提出了一种完全微观的方法。我们计算了AlxOy的稳定结构及其相关的热力学性质。根据这些数据,可以计算出由铝和氧原子组成的气体的化学成分随温度、压力和铝氧比的变化情况。我们证明了该方法在重现通过对Al2O3靶激光诱导等离子体的时间分辨光谱获得的实验结果方面的准确性。因此,我们将计算扩展到更低的温度,即更长的时间尺度,以提出导致首批氧化铝晶种的成分气体演化情景。