Koroglu Batikan, Wagnon Scott, Dai Zurong, Crowhurst Jonathan C, Armstrong Michael R, Weisz David, Mehl Marco, Zaug Joseph M, Radousky Harry B, Rose Timothy P
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, 94550, USA.
Department of Chemistry, Materials, and Chemical Engineering, Politecnico di Milano, Milan, Italy.
Sci Rep. 2018 Jul 11;8(1):10451. doi: 10.1038/s41598-018-28674-6.
We use a recently developed plasma-flow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-AlO, UO, and alpha-UO) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation.
我们使用最近开发的等离子体流动反应器,通过实验研究氧化、均匀成核、凝聚和团聚过程中气相金属原子形成氧化物纳米颗粒的情况。在大气压力下,在过量氧气存在的情况下,气相铀、铝和铁原子在短时间尺度(∆t < 30 ms)内从5000 K冷却至1000 K。原位发射光谱用于测量一氧化物/原子发射强度比随温度和氧逸度的变化。在反应器内收集冷凝的氧化物纳米颗粒,使用扫描和透射电子显微镜(SEM、TEM)进行非原位分析,以确定其结构组成和尺寸。还开发了一个化学动力学模型来描述铁和铝金属的气相反应。所得结晶纳米颗粒(FeO-维氏体、η-AlO、UO和α-UO)的尺寸和形态取决于热力学性质、动力学受限的气相化学反应以及局部氧化还原条件。这项工作表明,快速冷却气体中金属氧化物颗粒的成核和生长与气相氧化物形成的动力学控制化学途径密切相关。