Suppr超能文献

化脓性A群链球菌高毒力M23菌株的CovRS调控转录组分析为毒力决定因素提供了新见解。

CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants.

作者信息

Bao Yun-Juan, Liang Zhong, Mayfield Jeffrey A, Lee Shaun W, Ploplis Victoria A, Castellino Francis J

机构信息

W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

J Bacteriol. 2015 Oct;197(19):3191-205. doi: 10.1128/JB.00511-15. Epub 2015 Jul 27.

Abstract

UNLABELLED

The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence.

IMPORTANCE

The CovRS system modulates transcription of ∼ 18% of the genes in the Streptococcus pyogenes genome. Mutations that inactivate CovR or CovS enhance the virulence of this bacterium. We determined complete transcriptomes of a naturally CovS-inactivated invasive deep tissue isolate of an emm23 strain of S. pyogenes (M23ND) and its complemented avirulent variant (CovS(+)). We identified diverse virulence genes whose altered expression revealed a genetic switching of a nonvirulent form of M23ND to a highly virulent strain. Furthermore, we also systematically uncovered for the first time the comparative levels of expression of a broad spectrum of metabolic genes, which reflected different metabolic needs of the bacterium as it invaded deeper tissue of the human host.

摘要

未标记

双组分毒力调控(Cov)调节因子(R)-传感器(S)(CovRS)调节化脓性链球菌(A组链球菌[GAS])的毒力。感染过程中CovS的失活通过CovR调节多种毒力基因的转录,从而将GAS的致病性转变为更具侵袭性的形式。然而,CovRS通过扩展基因家族的表达来控制毒力的方式尚未完全确定。在本研究中,我们研究了高毒力emm23 GAS菌株(M23ND/CovS阴性[M23ND/CovS(-)])和非侵袭性同基因菌株(M23ND/CovS(+))在不同生长条件下的CovS调控基因表达谱。RNA测序确定了约349个基因(占染色体的18%)的表达发生了变化。数据表明,M23ND/CovS(-)通过增强负责抗吞噬作用的基因(如hasABC)的表达、废除毒素基因(如speB)的表达以及破坏具有非必需功能的基因产物(如sfb1)来实现高毒力。在这些基因中,有几个(如parE和parC)以前未被报道受CovRS调控。此外,该研究还表明,CovS还调节了广泛的代谢基因的表达,这些基因在生长和传播过程中最大化了营养利用和能量代谢,在此期间细菌会遇到可用营养物质的巨大变化,从而重塑GAS的代谢以适应不同的生长环境。通过构建全基因组规模的代谢模型,我们确定了16个构成独特营养源的非冗余代谢基因模块。这些基因被认为对病原体生长至关重要,并且可能与GAS毒力相关。全基因组范围内与毒力相关基因的预测确定了可能有助于GAS毒力的新候选基因。

重要性

CovRS系统调节化脓性链球菌基因组中约18%的基因转录。使CovR或CovS失活的突变会增强这种细菌的毒力。我们确定了化脓性链球菌emm23菌株(M23ND)的自然CovS失活的侵袭性深部组织分离株及其互补的无毒变体(CovS(+))的完整转录组。我们鉴定了多种毒力基因,其表达变化揭示了M23ND的无毒形式向高毒力菌株的遗传转变。此外,我们还首次系统地揭示了广泛的代谢基因的比较表达水平,这反映了细菌侵入人类宿主深部组织时不同的代谢需求。

相似文献

引用本文的文献

7
evades adaptive immunity through specific IgG glycan hydrolysis.通过特定的 IgG 聚糖水解来逃避适应性免疫。
J Exp Med. 2019 Jul 1;216(7):1615-1629. doi: 10.1084/jem.20190293. Epub 2019 May 15.

本文引用的文献

6
The challenge of constructing, classifying, and representing metabolic pathways.构建、分类和表示代谢途径的挑战。
FEMS Microbiol Lett. 2013 Aug;345(2):85-93. doi: 10.1111/1574-6968.12194. Epub 2013 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验