Lai Jason K, Kubelka Ginka S, Kubelka Jan
Department of Molecular Biology, University of Wyoming, Laramie, WY 82071;
Department of Chemistry, University of Wyoming, Laramie, WY 82071.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9890-5. doi: 10.1073/pnas.1506309112. Epub 2015 Jul 27.
Residue-level unfolding of two helix-turn-helix proteins--one naturally occurring and one de novo designed--is reconstructed from multiple sets of site-specific (13)C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa-Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako-Saitô-Muñoz-Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and (13)C-amide I' bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for "experimental" reaction coordinates--namely, the degree of local folding as sensed by site-specific (13)C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture.
利用类伊辛统计力学模型,从多组位点特异性(13)C同位素编辑红外(IR)和圆二色性(CD)数据重建了两种螺旋-转角-螺旋蛋白(一种天然存在,一种从头设计)的残基水平展开过程。对几种模型变体进行参数化,以测试序列特异性相互作用(由宫泽-杰尼根统计势近似)、局部结构灵活性(源自NMR结构集合)、螺旋间氢键以及由中间无序区域分隔的天然接触(通过和光-斋藤-穆尼奥斯-伊顿方案,该方案不允许此类构型)的重要性。通过直接模拟实验可观测量对模型进行优化:模型蛋白及其片段在222nm处的CD椭圆率,以及每种蛋白的多个同位素变体的(13)C-酰胺I'带。我们发现,允许无序环两侧有两个相互作用片段的模型(双序列近似)并在天然接触图中纳入灵活性,可以定量再现数据,但不需要序列特异性相互作用或氢键。作为全局序参量函数的几乎相同的自由能分布与几乎相同结构的预期相似折叠动力学一致。然而,这两种基序的预测折叠机制不同,反映了局部稳定性的顺序。我们引入了“实验”反应坐标的自由能分布,即位点特异性(13)C编辑红外所感知的局部折叠程度,这突出了折叠的异质性,并将其整体平均描述与详细的局部图景进行了对比。