Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States.
Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , China.
J Phys Chem B. 2018 Dec 13;122(49):11640-11648. doi: 10.1021/acs.jpcb.8b07683. Epub 2018 Aug 28.
Small single domain proteins that fold on the microsecond time scale have been the subject of intense interest as models for probing the complexity of folding energy landscapes. The villin headpiece subdomain (HP36) has been extensively studied because of its simple three helix structure, ultrafast folding lifetime of a few microseconds, and stable native fold. We have previously shown that folding as measured by a single C═O isotopic label on residue A57 in helix 2 occurs at a different rate than that measured by global probes of folding, indicating noncooperative complexity in the folding of HP36. In order to determine whether this complexity reflects intermediates or parallel pathways over a small activation barrier, C═O labels were individually incorporated at six different positions in HP36, including into all 3 helices. The equilibrium thermal unfolding transitions and the folding/unfolding dynamics were monitored using the unique IR signature of the C═O label by temperature dependent FTIR and temperature jump IR spectroscopy, respectively. Equilibrium experiments reveal that the C═O labels at different positions in HP36 show drastic differences in the midpoint of their transitions ( T), ranging from 45 to 67 °C. Heterogeneity is also observed in the relaxation kinetics; there are differences in the microsecond phase when different labeled positions are probed. At a final temperature of 45 °C, the relaxation rate for C═O A57 is 2.4e + 05 s whereas for C═O L69 HP36 the relaxation rate is 5.1e + 05 s, two times faster. The observation of site-dependent midpoints for the equilibrium unfolding transitions and differences in the relaxation rates of the labeled positions enables us to probe the progressive accumulation of the folded structure, providing insight into the microscopic details of the folding mechanism.
在微秒时间尺度上折叠的小单域蛋白质一直是研究折叠能量景观复杂性的热点模型。由于其简单的三螺旋结构、几微秒的超快折叠寿命和稳定的天然折叠, villin 头部亚结构域 (HP36) 已被广泛研究。我们之前已经表明,通过残基 A57 在螺旋 2 中的单个 C═O 同位素标记测量的折叠与通过全局折叠探针测量的折叠速率不同,表明 HP36 折叠存在非协同复杂性。为了确定这种复杂性是否反映了小激活势垒上的中间物或平行途径,我们在 HP36 中的六个不同位置分别引入了 C═O 标记,包括在所有 3 个螺旋中。通过温度相关的傅里叶变换红外光谱和温度跃变红外光谱分别使用 C═O 标记的独特 IR 特征监测平衡热解折叠转变和折叠/解折叠动力学。平衡实验表明,HP36 中不同位置的 C═O 标记在其转变的中点 ( T) 上显示出剧烈差异,范围从 45 到 67 °C。在弛豫动力学中也观察到异质性;当探测不同标记位置时,存在微秒阶段的差异。在最终温度为 45 °C 时,C═O A57 的弛豫速率为 2.4e + 05 s,而 C═O L69 HP36 的弛豫速率为 5.1e + 05 s,快两倍。平衡解折叠转变的位置依赖的中点和标记位置的弛豫速率差异的观察使我们能够探测折叠结构的渐进积累,从而深入了解折叠机制的微观细节。