Gero Domokos, Szabo Csaba
Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
Br J Pharmacol. 2015 Oct;172(20):4817-32. doi: 10.1111/bph.13252. Epub 2015 Oct 14.
Ischaemic heart disease can lead to serious, life-threatening complications. Traditional therapies for ischaemia aim to increase oxygen delivery and reduce the myocardial ATP consumption by increasing the coronary perfusion and by suppressing cardiac contractility, heart rate or blood pressure. An adjunctive treatment option for ischaemia is to improve or optimize myocardial metabolism.
Metabolic suppression in the ischaemic heart is characterized by reduced levels of high-energy molecules: ATP and NAD(+) . Because NAD(+) is required for most metabolic processes that generate ATP, we hypothesized that restoration of NAD(+) would be a prerequisite for ATP regeneration and examined the role of the major NAD(+) anabolic and catabolic pathways in the bioenergetic restoration process following oxygen-glucose deprivation injury in a cardiomyocyte cell line (H9c2 cells).
Salvage of NAD(+) via nicotinamide phosphoribosyl transferase was essential for bioenergetic recovery in cardiomyocytes. Blockade of nicotinamide phosphoribosyl transferase prevented the restoration of the cellular ATP pool following oxygen-glucose deprivation injury by inhibiting both the aerobic and anaerobic metabolism in the cardiomyocytes. NAD(+) consumption by PARP-1 also undermined the recovery processes, and PARP inhibition significantly improved the metabolism and increased cellular ATP levels in cardiomyocytes.
We conclude that the NAD(+) salvage pathway is essential for bioenergetic recovery in post-hypoxic cardiomyocytes and PARP inhibition may represent a potential future therapeutic intervention in ischaemic heart disease.
缺血性心脏病可导致严重的、危及生命的并发症。传统的缺血治疗方法旨在通过增加冠状动脉灌注以及抑制心脏收缩力、心率或血压来增加氧输送并减少心肌ATP消耗。缺血的一种辅助治疗选择是改善或优化心肌代谢。
缺血心脏中的代谢抑制表现为高能分子ATP和NAD⁺水平降低。由于大多数产生ATP的代谢过程都需要NAD⁺,我们假设恢复NAD⁺是ATP再生的先决条件,并研究了主要的NAD⁺合成代谢和分解代谢途径在心肌细胞系(H9c2细胞)氧葡萄糖剥夺损伤后生物能量恢复过程中的作用。
通过烟酰胺磷酸核糖转移酶挽救NAD⁺对于心肌细胞的生物能量恢复至关重要。抑制烟酰胺磷酸核糖转移酶会通过抑制心肌细胞的有氧和无氧代谢来阻止氧葡萄糖剥夺损伤后细胞ATP池的恢复。PARP-1消耗NAD⁺也会破坏恢复过程,而抑制PARP可显著改善心肌细胞的代谢并提高细胞ATP水平。
我们得出结论,NAD⁺挽救途径对于缺氧后心肌细胞的生物能量恢复至关重要,抑制PARP可能代表了未来缺血性心脏病的一种潜在治疗干预措施。