Suppr超能文献

用于配备FFF束流的专用立体定向直线加速器的与QFix kVue Calypso兼容的治疗床顶部模型的生成与验证。

Generation and verification of QFix kVue Calypso-compatible couch top model for a dedicated stereotactic linear accelerator with FFF beams.

作者信息

Gardner Stephen J, Gulam Misbah, Song Kwang, Li Haisen, Huang Yimei, Zhao Bo, Qin Yujiao, Snyder Karen, Kim Jinkoo, Gordon James, Chetty Indrin J, Wen Ning

机构信息

Henry Ford Health System.

出版信息

J Appl Clin Med Phys. 2015 Jul 8;16(4):163–180. doi: 10.1120/jacmp.v16i4.5441.

Abstract

This study details the generation, verification, and implementation of a treatment planning system (TPS) couch top model for patient support system used in conjunction with a dedicated stereotactic linear accelerator. Couch top model was created within the TPS using CT simulation images of the kVue Calpyso-compatible couchtop (with rails). Verification measurements were compared to TPS dose prediction for different energies (6 MV FFF and 10 MV FFF) and rail configurations (rails in and rails out) using: 1) central axis point-dose measurements with pinpoint chamber in water-equivalent phantom at 42 gantry angles for various field sizes (2 × 2 cm², 4 × 4 cm², 10 × 10 cm²); and 2) Gafchromic EBT3 film parallel to beam in acrylic slab to assess changes in surface and percent depth doses in PA geometry. To assess sensitivity of delivered dose to variations in patient lateral position, measurements at central axis using the pinpoint chamber geometry were taken at lateral couch displacements of 2, 5, and 10 mm for 6 MV FFF. The maximum percent difference for point-dose measurements was 3.24% (6 MV FFF) and 2.30% (10 MV FFF). The average percent difference for point-dose measurements was less than 1.10% for all beam energies and rail geometries. The maximum percent difference between calculated and measured dose can be as large as 13.0% if no couch model is used for dose calculation. The presence of the couch structures also impacts surface dose and PDD, which was evaluated with Gafchromic film measurements. The upstream shift in the depth of dose maximum (dmax) was found to be 10.5 mm for 6 MV FFF and 5.5 mm for 10 MV FFF for 'Rails In' configuration. Transmission of the treatment beam through the couch results in an increase in surface dose (absolute percentage) of approximately 50% for both photon energies (6 MV FFF and 10MV FFF). The largest sensitivity to lateral shifts occurred at the lateral boundary of the rail structures. The mean magnitude (standard deviation) of the deviation between shifted and centered measurements over all field sizes tested was 0.61% (0.61%) for 2 mm shifts, 0.46% (0.67%) for 5 mm shifts, and 0.86% (1.46%) for 10 mm shifts.

摘要

本研究详细介绍了一种治疗计划系统(TPS)治疗床面模型的生成、验证及实施,该模型用于与专用立体定向直线加速器配合使用的患者支撑系统。治疗床面模型是在TPS内利用kVue Calpyso兼容治疗床面(带轨道)的CT模拟图像创建的。使用以下方法将验证测量结果与TPS对不同能量(6 MV FFF和10 MV FFF)及轨道配置(轨道在内和轨道在外)的剂量预测进行比较:1)在42个机架角度下,使用水中等效体模中的针点电离室对各种射野尺寸(2×2 cm²、4×4 cm²、10×10 cm²)进行中心轴点剂量测量;2)在丙烯酸板中使用与射束平行的Gafchromic EBT3胶片,以评估PA几何结构中表面剂量和百分深度剂量的变化。为评估所递送剂量对患者横向位置变化的敏感性,在6 MV FFF的情况下,在治疗床横向位移2、5和10 mm时,使用针点电离室几何结构在中心轴进行测量。点剂量测量的最大百分比差异为3.24%(6 MV FFF)和2.30%(10 MV FFF)。对于所有射束能量和轨道几何结构,点剂量测量的平均百分比差异小于1.10%。如果在剂量计算中不使用治疗床模型,计算剂量与测量剂量之间的最大百分比差异可能高达13.0%。治疗床结构的存在也会影响表面剂量和百分深度剂量,这通过Gafchromic胶片测量进行了评估。对于“轨道在内”配置,发现6 MV FFF时剂量最大值深度(dmax)的上游偏移为10.5 mm,10 MV FFF时为5.5 mm。治疗射束穿过治疗床导致两种光子能量(6 MV FFF和10 MV FFF)的表面剂量(绝对百分比)增加约50%。对横向偏移的最大敏感性出现在轨道结构的横向边界处。在所有测试射野尺寸上,偏移测量与中心测量之间偏差均值(标准差)在2 mm偏移时为0.61%(0.61%),5 mm偏移时为0.46%(0.67%),10 mm偏移时为0.86%(1.46%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4397/5690015/b31baa91bbbe/ACM2-16-163-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验