Suppr超能文献

在不同浓度κ-卡拉胶存在下银纳米颗粒的绿色声化学合成

Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan.

作者信息

Elsupikhe Randa Fawzi, Shameli Kamyar, Ahmad Mansor B, Ibrahim Nor Azowa, Zainudin Norhazlin

机构信息

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia,

出版信息

Nanoscale Res Lett. 2015 Dec;10(1):916. doi: 10.1186/s11671-015-0916-1. Epub 2015 Jul 28.

Abstract

A green sonochemical method was developed for preparing silver nanoparticles (Ag-NPs) in different concentrations of kappa carrageenan (κ-carrageenan). The κ-carrageenan was used as a natural eco-friendly stabilizer, and ultrasonic irradiation was used as a green reducing agent. The number of Ag-NPs increased with increasing κ-carrageenan concentrations. Formation of Ag/κ-carrageenan was determined by UV-visible spectroscopy where the surface plasmon absorption maximum was observed at 402 to 420 nm. The X-ray diffraction (XRD) analysis showed that the Ag-NPs are of a face-centered cubic structure. The Fourier transform infrared (FT-IR) spectrum indicated the presence of Ag-NPs in κ-carrageenan. Transmission electron microscopy (TEM) image for the highest concentration of κ-carrageenan showed the distribution of Ag-NPs with an average particle size near to 4.21 nm. Scan electron microscopy (SEM) images illustrated the spherical shape of the Ag-NPs. The use of photo irradiation provides a green and economic feature to this work.

摘要

开发了一种绿色声化学方法,用于在不同浓度的κ-卡拉胶(κ-carrageenan)中制备银纳米颗粒(Ag-NPs)。κ-卡拉胶用作天然环保稳定剂,超声辐照用作绿色还原剂。Ag-NPs的数量随着κ-卡拉胶浓度的增加而增加。通过紫外可见光谱法确定了Ag/κ-卡拉胶的形成,在402至420nm处观察到表面等离子体吸收最大值。X射线衍射(XRD)分析表明,Ag-NPs为面心立方结构。傅里叶变换红外(FT-IR)光谱表明κ-卡拉胶中存在Ag-NPs。κ-卡拉胶最高浓度的透射电子显微镜(TEM)图像显示了Ag-NPs的分布,平均粒径接近4.21nm。扫描电子显微镜(SEM)图像说明了Ag-NPs的球形形状。光辐照的使用为这项工作提供了绿色和经济的特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98e/4523502/38ba0c1d1463/11671_2015_916_Fig1_HTML.jpg

相似文献

1
Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan.
Nanoscale Res Lett. 2015 Dec;10(1):916. doi: 10.1186/s11671-015-0916-1. Epub 2015 Jul 28.
2
3
Synthesis characterization and application of butyl acrylate mediated eco-friendly silver nanoparticles using ultrasonic radiation.
Heliyon. 2024 Mar 21;10(7):e28309. doi: 10.1016/j.heliyon.2024.e28309. eCollection 2024 Apr 15.
4
An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles.
J Photochem Photobiol B. 2018 May;182:108-114. doi: 10.1016/j.jphotobiol.2018.04.002. Epub 2018 Apr 7.
5
Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles.
Int J Nanomedicine. 2015 Mar 16;10:2079-88. doi: 10.2147/IJN.S75874. eCollection 2015.
6
Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.
J Photochem Photobiol B. 2016 Jan;154:1-7. doi: 10.1016/j.jphotobiol.2015.11.004. Epub 2015 Nov 10.
7
Investigation of antibacterial properties silver nanoparticles prepared via green method.
Chem Cent J. 2012 Jul 27;6(1):73. doi: 10.1186/1752-153X-6-73.
8
Biosynthesis of silver nanoparticles using Artocarpus elasticus stem bark extract.
Chem Cent J. 2015 Nov 2;9:61. doi: 10.1186/s13065-015-0133-0. eCollection 2015.
9
Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 5;134:326-32. doi: 10.1016/j.saa.2014.05.078. Epub 2014 Jun 19.
10
Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.
Carbohydr Polym. 2014 Sep 22;110:195-202. doi: 10.1016/j.carbpol.2014.03.053. Epub 2014 Mar 28.

引用本文的文献

1
Silver nanoparticles as next-generation antimicrobial agents: mechanisms, challenges, and innovations against multidrug-resistant bacteria.
Front Cell Infect Microbiol. 2025 Aug 14;15:1599113. doi: 10.3389/fcimb.2025.1599113. eCollection 2025.
5
"Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles".
Biotechnol Notes. 2024 Jun 1;5:64-79. doi: 10.1016/j.biotno.2024.05.002. eCollection 2024.
6
A Comprehensive Review of Silver and Gold Nanoparticles as Effective Antibacterial Agents.
Pharmaceuticals (Basel). 2024 Aug 29;17(9):1134. doi: 10.3390/ph17091134.
7
Optimized Incorporation of Silver Nanoparticles onto Cotton Fabric Using -Carrageenan Coatings for Enhanced Antimicrobial Properties.
ACS Appl Bio Mater. 2024 Oct 21;7(10):6908-6918. doi: 10.1021/acsabm.4c01002. Epub 2024 Sep 24.
10
Facile Synthesis of Band Gap-Tunable Kappa-Carrageenan-Mediated C,S-Doped TiO Nanoparticles for Enhanced Dye Degradation.
ACS Omega. 2024 Apr 29;9(19):21245-21259. doi: 10.1021/acsomega.4c01370. eCollection 2024 May 14.

本文引用的文献

2
Carrageenan: a natural seaweed polysaccharide and its applications.
Carbohydr Polym. 2014 May 25;105:97-112. doi: 10.1016/j.carbpol.2014.01.067. Epub 2014 Jan 30.
3
Carrageenan and its applications in drug delivery.
Carbohydr Polym. 2014 Mar 15;103:1-11. doi: 10.1016/j.carbpol.2013.12.008. Epub 2013 Dec 11.
4
Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation.
Ultrason Sonochem. 2014 Mar;21(2):542-8. doi: 10.1016/j.ultsonch.2013.09.003. Epub 2013 Sep 13.
5
Development of CMC hydrogels loaded with silver nano-particles for medical applications.
Carbohydr Polym. 2013 Jan 30;92(1):407-13. doi: 10.1016/j.carbpol.2012.08.094. Epub 2012 Sep 1.
6
Investigation of antibacterial properties silver nanoparticles prepared via green method.
Chem Cent J. 2012 Jul 27;6(1):73. doi: 10.1186/1752-153X-6-73.
7
Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method.
Int J Mol Sci. 2012;13(6):6639-6650. doi: 10.3390/ijms13066639. Epub 2012 May 30.
10
Introduction to metallic nanoparticles.
J Pharm Bioallied Sci. 2010 Oct;2(4):282-9. doi: 10.4103/0975-7406.72127.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验