Suppr超能文献

一种新的优化方法,结合非气孔限制,预测了来自六个植物功能型的物种的气孔行为。

A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types.

机构信息

INRA, UMR ISPA, Villenave d'Ornon, France.

Basque Centre for Climate Change (BC3), Leioa, Spain.

出版信息

J Exp Bot. 2019 Mar 11;70(5):1639-1651. doi: 10.1093/jxb/erz020.

Abstract

The primary function of stomata is to minimize plant water loss while maintaining CO2 assimilation. Stomatal water loss incurs an indirect cost to photosynthesis in the form of non-stomatal limitations (NSL) via reduced carboxylation capacity (CAP) and/or mesophyll conductance (MES). Two optimal formulations for stomatal conductance (gs) arise from the assumption of each type of NSL. In reality, both NSL could coexist, but one may prevail for a given leaf ontogenetic stage or plant functional type, depending on leaf morphology. We tested the suitability of two gs formulations (CAP versus MES) on species from six plant functional types (C4 crop, C3 grass, fern, conifer, evergreen, and deciduous angiosperm trees). MES and CAP parameters (the latter proportional to the marginal water cost to carbon gain) decreased with water availability only in deciduous angiosperm trees, while there were no clear differences between leaf ontogenetic stages. Both CAP and MES formulations fit our data in most cases, particularly under low water availability. For ferns, stomata appeared to operate optimally only when subjected to water stress. Overall, the CAP formulation provided a better fit across all species, suggesting that sub-daily stomatal responses minimize NSL by reducing carboxylation capacity predominantly, regardless of leaf morphology and ontogenetic stage.

摘要

气孔的主要功能是在维持 CO2 同化的同时,最大限度地减少植物水分流失。气孔水分流失会通过降低羧化能力 (CAP) 和/或质膜导度 (MES) 对光合作用造成间接限制 (NSL),从而产生间接成本。两种最优的气孔导度 (gs) 公式是基于每种 NSL 假设得出的。实际上,两种 NSL 都可能共存,但取决于叶片形态,对于给定的叶片发育阶段或植物功能类型,一种 NSL 可能占主导地位。我们测试了两种 gs 公式 (CAP 与 MES) 在六种植物功能类型 (C4 作物、C3 草、蕨类植物、针叶树、常绿植物和落叶被子植物) 的物种中的适用性。只有在落叶被子植物中,MES 和 CAP 参数(后者与碳收益的边际水成本成正比)才会随着水分可用性的降低而降低,而在叶片发育阶段之间则没有明显差异。在大多数情况下,两种 CAP 和 MES 公式都适用于我们的数据,特别是在水分可用性较低的情况下。对于蕨类植物,只有在受到水分胁迫时,气孔似乎才会最佳运作。总的来说,在所有物种中,CAP 公式的拟合效果都更好,这表明无论叶片形态和发育阶段如何,亚日尺度的气孔响应主要通过降低羧化能力来最大限度地减少 NSL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3061/6411372/66a1c0cfebd8/erz02001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验