Popkov Alexander, Breza Martin
Department of Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands ; Department of Cognitive Research and Tomographic Imaging Methods, Samo University in Pardubice, Na Klínku 1082, 530 06 Pardubice, Czech Republic ; Institute of Physical Biology, University of South Bohemia, Zámek 136, 373 33 Nové Hrady, Czech Republic.
Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic.
J Radioanal Nucl Chem. 2010;286(3):829-833. doi: 10.1007/s10967-010-0823-y. Epub 2010 Sep 7.
Chiral Ni(II) complexes are used for the preparation of carbon-11 or fluorine-18 enantiomerically pure α-amino acids for positron emission tomography (PET). They enable the selective monoalkylation of a glycine synthon with high stereoselectivity and the preparation of enantiomerically pure α-amino acids with quarternary α-carbon. Molecular modelling of non-, mono- and di-substituted complexes using quantum theory of atoms-in-molecule (QTAIM) topological analysis of electron density allowed us to formulate a new theory explaining the reasons for highly selective monomethylation of the complexes. In the non-substituted complex (GK), the α-carbon atom exhibits a higher atomic volume and a more positive charge in comparison with mono- and di-substituted complexes. This unusual behaviour is accompanied by increasing the bond critical point (BCP) ellipticity of the iminic bond in GK explained by the higher mechanical strain. Both phenomena indicate the increased reactivity and probably originate in more compact core of GK where shorter distances in the internal coordination sphere result in the higher strain of its bonds.
手性镍(II)配合物用于制备用于正电子发射断层扫描(PET)的碳-11或氟-18对映体纯的α-氨基酸。它们能够使甘氨酸合成子进行具有高立体选择性的选择性单烷基化反应,并制备具有季α-碳的对映体纯α-氨基酸。使用分子中的原子量子理论(QTAIM)对电子密度进行拓扑分析,对非取代、单取代和二取代配合物进行分子建模,使我们能够提出一种新理论,解释配合物高度选择性单甲基化的原因。与单取代和二取代配合物相比,在未取代的配合物(GK)中,α-碳原子表现出更高的原子体积和更正的电荷。这种不寻常的行为伴随着GK中亚胺键的键临界点(BCP)椭圆率增加,这是由更高的机械应变所解释的。这两种现象都表明反应性增加,并且可能起源于GK更紧密的核心,其中内配位球中较短的距离导致其键的更高应变。