Suppr超能文献

基于深度学习的阿尔茨海默病 SNPs 与 ROI 的相关性分析。

A Correlation Analysis between SNPs and ROIs of Alzheimer's Disease Based on Deep Learning.

机构信息

School of Software, East China Jiaotong University, Nanchang 330013, China.

出版信息

Biomed Res Int. 2021 Feb 9;2021:8890513. doi: 10.1155/2021/8890513. eCollection 2021.

Abstract

. At present, the research methods for image genetics of Alzheimer's disease based on machine learning are mainly divided into three steps: the first step is to preprocess the original image and gene information into digital signals that are easy to calculate; the second step is feature selection aiming at eliminating redundant signals and obtain representative features; and the third step is to build a learning model and predict the unknown data with regression or bivariate correlation analysis. This type of method requires manual extraction of feature single-nucleotide polymorphisms (SNPs), and the extraction process relies on empirical knowledge to a certain extent, such as linkage imbalance and gene function information in a group sparse model, which puts forward certain requirements for applicable scenarios and application personnel. To solve the problems of insufficient biological significance and large errors in the previous methods of association analysis and disease diagnosis, this paper presents a method of correlation analysis and disease diagnosis between SNP and region of interest (ROI) based on a deep learning model. It is a data-driven method, which has no obvious feature selection process. . The deep learning method adopted in this paper has no obvious feature extraction process relying on prior knowledge and model assumptions. From the results of correlation analysis between SNP and ROI, this method is complementary to other regression model methods in application scenarios. In order to improve the disease diagnosis performance of deep learning, we use the deep learning model to integrate SNP characteristics and ROI characteristics. The SNP feature, ROI feature, and SNP-ROI joint feature were input into the deep learning model and trained by cross-validation technique. The experimental results show that the SNP-ROI joint feature describes the information of the samples from different angles, which makes the diagnosis accuracy higher.

摘要

. 目前,基于机器学习的阿尔茨海默病图像遗传学研究方法主要分为三个步骤:第一步是将原始图像和基因信息预处理成易于计算的数字信号;第二步是特征选择,旨在消除冗余信号并获得代表性特征;第三步是建立学习模型,并用回归或双变量相关分析预测未知数据。这种方法需要手动提取特征单核苷酸多态性(SNP),提取过程在一定程度上依赖于经验知识,例如组稀疏模型中的连锁不平衡和基因功能信息,这对适用场景和应用人员提出了一定的要求。为了解决关联分析和疾病诊断前期方法中生物意义不足和误差较大的问题,本文提出了一种基于深度学习模型的 SNP 与感兴趣区域(ROI)之间相关性分析和疾病诊断的方法。它是一种数据驱动的方法,没有明显的特征选择过程。. 本文采用的深度学习方法没有明显的基于先验知识和模型假设的特征提取过程。从 SNP 与 ROI 相关性分析的结果来看,该方法在应用场景中与其他回归模型方法互补。为了提高深度学习的疾病诊断性能,我们使用深度学习模型整合 SNP 特征和 ROI 特征。将 SNP 特征、ROI 特征和 SNP-ROI 联合特征输入到深度学习模型中,并通过交叉验证技术进行训练。实验结果表明,SNP-ROI 联合特征从不同角度描述了样本的信息,从而提高了诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/875c/7886593/9bb02eacfece/BMRI2021-8890513.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验