I. Physikalisches Institut, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
Phys Rev Lett. 2015 Jul 17;115(3):037203. doi: 10.1103/PhysRevLett.115.037203. Epub 2015 Jul 15.
In the field of spin caloritronics, spin-dependent transport phenomena are observed in a number of current experiments where a temperature gradient across a nanostructured interface is applied. The interpretation of these experiments is not clear as both phonons and electrons may contribute to thermal transport. Therefore, it still remains an open question how the temperature drop across a magnetic nanostructured interface arises microscopically. We answer this question for the case of a magnetic tunnel junction (MTJ) where the tunneling magneto-Seebeck effect occurs. Our explanation may be extended to other types of nanostructured interfaces. We explicitly calculate phonon and electron thermal conductance across Fe/MgO/Fe MTJs in an ab initio approach using a Green function method. Furthermore, we are able to calculate the electron and phonon temperature profile across the Fe/MgO/Fe MTJ by estimating the electron-phonon interaction in the Fe leads. Our results show that there is an electron-phonon temperature imbalance at the Fe-MgO interfaces. As a consequence, a revision of the interpretation of current experimental measurements may be necessary.
在自旋热电子学领域,在许多当前的实验中观察到了自旋相关的输运现象,其中在纳米结构界面上施加了温度梯度。这些实验的解释并不清楚,因为声子和电子都可能对热输运有贡献。因此,磁纳米结构界面上的温度下降是如何微观产生的仍然是一个悬而未决的问题。我们回答了在发生隧道磁电 - 塞贝克效应的情况下,对于磁性隧道结(MTJ)的情况。我们的解释可以扩展到其他类型的纳米结构界面。我们使用格林函数方法在从头算方法中明确地计算了 Fe/MgO/Fe MTJ 中的声子和电子热导率。此外,我们通过估计 Fe 引线中的电子-声子相互作用,能够计算 Fe/MgO/Fe MTJ 中的电子和声子温度分布。我们的结果表明,在 Fe-MgO 界面处存在电子-声子温度不平衡。因此,可能需要对当前实验测量的解释进行修订。