Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
ChemMatCARS, The University of Chicago, Argonne, IL 60439.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15836-15841. doi: 10.1073/pnas.1907699116. Epub 2019 Jul 19.
In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering factors within clusters, including 1) metal atom primary coordination sphere, 2) M-M bonding, and 3) redox delocalization in formally mixed-valent species. Complexes were investigated which vary from highly symmetric to fully asymmetric by Fe Mössbauer and X-ray diffraction to explore the relationship between MAD-derived data and the data available from these widely used characterization techniques. The compounds examined include the all-ferrous clusters [ BuN][(L)Fe(μ-Cl)] (1) ([L] = [1,3,5-CH(NCH--NSi BuMe)]]), (L)Fe(py) (2), [K(C)][(L)Fe(μ-NPh)] (4) (C = 2,2,2-cryptand), and the mixed-valent (L)Fe(μ-NPh) (3). Redox delocalization in mixed-valent 3 was explored with cyclic voltammetry (CV), zero-field Fe Mössbauer, near-infrared (NIR) spectroscopy, and X-ray crystallography techniques. We find that the MAD results show an excellent correspondence to Fe Mössbauer data; yet also can distinguish between subtle changes in local coordination geometries where Mössbauer cannot. Differences within aggregate oxidation levels are evident by systematic shifts of scattering factor envelopes to increasingly higher energies. However, distinguishing local oxidation levels in iso- or mixed-valent materials can be dramatically obscured by the degree of covalent intracore bonding. MAD-derived atomic scattering factor data emphasize in-edge features that are often difficult to analyze by X-ray absorption near edge spectroscopy (XANES). Thus, relative oxidation levels within the cluster were most reliably ascertained from comparing the entire envelope of the atomic scattering factor data.
在本报告中,我们通过多波长反常散射(MAD)研究了一系列三核铁配合物,通过自由精修原子散射因子来探索簇材料中的氧化还原负载分布。我们探讨了几种可能影响簇内原子散射因子的因素,包括 1)金属原子的初级配体场,2)M-M 键,以及 3)形式上混合价物种中的氧化还原离域。我们通过穆斯堡尔和 X 射线衍射研究了具有高度对称和完全不对称结构的配合物,以探索 MAD 衍生数据与这些广泛使用的特征技术提供的数据之间的关系。所研究的化合物包括全二价的[BuN][(L)Fe(μ-Cl)](1)([L] = [1,3,5-CH(NCH--NSi BuMe)]]),(L)Fe(py)(2),[K(C)][(L)Fe(μ-NPh)](4)(C = 2,2,2-穴醚)和混合价的(L)Fe(μ-NPh)(3)。我们通过循环伏安法(CV)、零场穆斯堡尔、近红外(NIR)光谱和 X 射线晶体学技术研究了混合价 3 的氧化还原离域。我们发现 MAD 结果与穆斯堡尔数据非常吻合;然而,它也可以区分穆斯堡尔无法区分的局部配位几何结构的细微变化。通过散射因子包络向越来越高的能量的系统位移,明显可以看出聚集体氧化水平的差异。然而,在同核或混合价材料中,局部氧化水平的区分可能会因核内共价键的程度而严重模糊。MAD 衍生的原子散射因子数据强调了边缘特征,这些特征通常很难通过近边 X 射线吸收光谱(XANES)进行分析。因此,通过比较原子散射因子数据的整个包络,可以最可靠地确定簇内的相对氧化水平。