Suppr超能文献

调控重布线导致交叉广泛的遗传异质性。

Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity.

机构信息

Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 21546.

Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 21546

出版信息

Genetics. 2015 Oct;201(2):769-77. doi: 10.1534/genetics.115.180661. Epub 2015 Jul 30.

Abstract

Genetic heterogeneity occurs when individuals express similar phenotypes as a result of different underlying mechanisms. Although such heterogeneity is known to be a potential source of unexplained heritability in genetic mapping studies, its prevalence and molecular basis are not fully understood. Here we show that substantial genetic heterogeneity underlies a model phenotype--the ability to grow invasively--in a cross of two Saccharomyces cerevisiae strains. The heterogeneous basis of this trait across genotypes and environments makes it difficult to detect causal loci with standard genetic mapping techniques. However, using selective genotyping in the original cross, as well as in targeted backcrosses, we detected four loci that contribute to differences in the ability to grow invasively. Identification of causal genes at these loci suggests that they act by changing the underlying regulatory architecture of invasion. We verified this point by deleting many of the known transcriptional activators of invasion, as well as the gene encoding the cell surface protein Flo11 from five relevant segregants and showing that these individuals differ in the genes they require for invasion. Our work illustrates the extensive genetic heterogeneity that can underlie a trait and suggests that regulatory rewiring is a basic mechanism that gives rise to this heterogeneity.

摘要

遗传异质性是指个体表现出相似的表型,但其潜在机制却不同。尽管这种异质性是遗传图谱研究中未被解释的遗传率的一个潜在来源,但它的普遍性和分子基础尚未完全了解。在这里,我们展示了在两个酿酒酵母菌株的杂交中,一个模型表型——侵袭性生长的能力——存在着大量的遗传异质性。这种性状在基因型和环境之间的异质性基础使得使用标准遗传图谱技术检测因果基因座变得非常困难。然而,通过在原始杂交以及靶向回交中进行选择性基因分型,我们检测到四个与侵袭性生长能力差异有关的基因座。这些基因座上的因果基因的鉴定表明,它们通过改变侵袭的潜在调节结构起作用。我们通过删除五个相关分离子中许多已知的侵袭性转录激活因子以及编码细胞表面蛋白 Flo11 的基因来验证这一点,并表明这些个体在入侵所需的基因上存在差异。我们的工作说明了可以为一个性状提供基础的遗传异质性的广泛性,并表明调节重布线是产生这种异质性的基本机制。

相似文献

1
Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity.
Genetics. 2015 Oct;201(2):769-77. doi: 10.1534/genetics.115.180661. Epub 2015 Jul 30.
2
Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
BMC Genomics. 2006 May 24;7:125. doi: 10.1186/1471-2164-7-125.
3
4
Layers of Cryptic Genetic Variation Underlie a Yeast Complex Trait.
Genetics. 2019 Apr;211(4):1469-1482. doi: 10.1534/genetics.119.301907. Epub 2019 Feb 20.
5
Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.
FEMS Yeast Res. 2012 Mar;12(2):215-27. doi: 10.1111/j.1567-1364.2011.00777.x. Epub 2012 Jan 24.
6
Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
PLoS Genet. 2018 Apr 12;14(4):e1007335. doi: 10.1371/journal.pgen.1007335. eCollection 2018 Apr.
7
Quantitative trait loci mapped to single-nucleotide resolution in yeast.
Nat Genet. 2005 Dec;37(12):1333-40. doi: 10.1038/ng1674. Epub 2005 Nov 6.
8
Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth.
Genetics. 2017 Jul;206(3):1645-1657. doi: 10.1534/genetics.116.195180. Epub 2017 May 11.
9
Genetic complexity and quantitative trait loci mapping of yeast morphological traits.
PLoS Genet. 2007 Feb 23;3(2):e31. doi: 10.1371/journal.pgen.0030031.
10
Multi-locus Genotypes Underlying Temperature Sensitivity in a Mutationally Induced Trait.
PLoS Genet. 2016 Mar 18;12(3):e1005929. doi: 10.1371/journal.pgen.1005929. eCollection 2016 Mar.

引用本文的文献

1
Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals.
iScience. 2024 Aug 31;27(10):110860. doi: 10.1016/j.isci.2024.110860. eCollection 2024 Oct 18.
2
Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity.
PLoS Genet. 2022 Jan 4;18(1):e1009988. doi: 10.1371/journal.pgen.1009988. eCollection 2022 Jan.
3
System drift and speciation.
Evolution. 2022 Feb;76(2):236-251. doi: 10.1111/evo.14356. Epub 2021 Oct 7.
4
The complex role of genetic background in shaping the effects of spontaneous and induced mutations.
Yeast. 2021 Mar;38(3):187-196. doi: 10.1002/yea.3530. Epub 2020 Dec 14.
5
Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of .
G3 (Bethesda). 2019 May 7;9(5):1533-1544. doi: 10.1534/g3.119.400080.
6
Layers of Cryptic Genetic Variation Underlie a Yeast Complex Trait.
Genetics. 2019 Apr;211(4):1469-1482. doi: 10.1534/genetics.119.301907. Epub 2019 Feb 20.
7
The rewiring of transcription circuits in evolution.
Curr Opin Genet Dev. 2017 Dec;47:121-127. doi: 10.1016/j.gde.2017.09.004. Epub 2017 Nov 8.
8
Epistasis: Searching for Interacting Genetic Variants Using Crosses.
G3 (Bethesda). 2017 Jun 7;7(6):1619-1622. doi: 10.1534/g3.117.042770.
9
Epistasis: Searching for Interacting Genetic Variants Using Crosses.
Genetics. 2017 Jun;206(2):531-535. doi: 10.1534/genetics.117.203059.
10
Genetic suppression: Extending our knowledge from lab experiments to natural populations.
Bioessays. 2017 Jul;39(7). doi: 10.1002/bies.201700023. Epub 2017 May 4.

本文引用的文献

1
Allelic variation, aneuploidy, and nongenetic mechanisms suppress a monogenic trait in yeast.
Genetics. 2015 Jan;199(1):247-62. doi: 10.1534/genetics.114.170563. Epub 2014 Nov 13.
2
Dissecting complex traits using the Drosophila Synthetic Population Resource.
Trends Genet. 2014 Nov;30(11):488-95. doi: 10.1016/j.tig.2014.07.009. Epub 2014 Aug 28.
3
Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth.
PLoS Genet. 2014 Aug 21;10(8):e1004570. doi: 10.1371/journal.pgen.1004570. eCollection 2014 Aug.
4
Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11.
Biochem Biophys Res Commun. 2014 Jun 27;449(2):202-7. doi: 10.1016/j.bbrc.2014.04.161. Epub 2014 May 9.
5
Genetic interactions involving five or more genes contribute to a complex trait in yeast.
PLoS Genet. 2014 May 1;10(5):e1004324. doi: 10.1371/journal.pgen.1004324. eCollection 2014 May.
7
The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases.
PLoS One. 2013 Oct 11;8(10):e76295. doi: 10.1371/journal.pone.0076295. eCollection 2013.
8
Polygenic molecular architecture underlying non-sexual cell aggregation in budding yeast.
DNA Res. 2013 Feb;20(1):55-66. doi: 10.1093/dnares/dss033. Epub 2013 Jan 2.
9
Genetic variation in Saccharomyces cerevisiae: circuit diversification in a signal transduction network.
Genetics. 2012 Dec;192(4):1523-32. doi: 10.1534/genetics.112.145573. Epub 2012 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验