Suppr超能文献

基于三种常见介电边界定义的连续介质静电计算的准确性。

Accuracy of continuum electrostatic calculations based on three common dielectric boundary definitions.

作者信息

Onufriev Alexey V, Aguilar Boris

机构信息

Department of Computer Science and Department of Physics, Virginia Tech, Blacksburg, VA 24060, and Department of Computer Science, Virginia Tech, Blacksburg, VA 24060.

出版信息

J Theor Comput Chem. 2014 May;13(3). doi: 10.1142/S0219633614400069.

Abstract

We investigate the influence of three common definitions of the solute/solvent dielectric boundary (DB) on the accuracy of the electrostatic solvation energy Δ computed within the Poisson Boltzmann and the generalized Born models of implicit solvation. The test structures include small molecules, peptides and small proteins; explicit solvent Δ are used as accuracy reference. For common atomic radii sets BONDI, PARSE (and ZAP9 for small molecules) the use of van der Waals (vdW) DB results, on average, in considerably larger errors in Δ than the molecular surface (MS) DB. The optimal probe radius for which the MS DB yields the most accurate Δ varies considerably between structure types. The solvent accessible surface (SAS) DB becomes optimal at ~ 0.2 Å (exact value is sensitive to the structure and atomic radii), at which point the average accuracy of Δ is comparable to that of the MS-based boundary. The geometric equivalence of SAS to vdW surface based on the same atomic radii uniformly increased by gives the corresponding optimal vdW DB. For small molecules, the optimal vdW DB based on BONDI + 0.2 Å radii can yield Δ estimates at least as accurate as those based on the optimal MS DB. Also, in small molecules, pairwise charge-charge interactions computed with the optimal vdW DB are virtually equal to those computed with the MS DB, suggesting that in this case the two boundaries are practically equivalent by the electrostatic energy criteria. In structures other than small molecules, the optimal vdW and MS dielectric boundaries are not equivalent: the respective pairwise electrostatic interactions in the presence of solvent can differ by up to 5 kcal/mol for individual atomic pairs in small proteins, even when the total Δ are equal. For small proteins, the average decrease in pairwise electrostatic interactions resulting from the switch from optimal MS to optimal vdW DB definition can be mimicked within the MS DB definition by doubling of the solute dielectric constant. However, the use of the higher interior dielectric does not eliminate the large individual deviations between pairwise interactions computed within the two DB definitions. It is argued that while the MS based definition of the dielectric boundary is more physically correct in some types of practical calculations, the choice is not so clear in some other common scenarios.

摘要

我们研究了溶质/溶剂介电边界(DB)的三种常见定义对在泊松玻尔兹曼和广义玻恩隐式溶剂化模型中计算的静电溶剂化能Δ准确性的影响。测试结构包括小分子、肽和小蛋白质;明确溶剂的Δ用作准确性参考。对于常见的原子半径集BONDI、PARSE(以及小分子的ZAP9),使用范德华(vdW)DB平均而言,在Δ中产生的误差比分子表面(MS)DB大得多。MS DB产生最准确Δ的最佳探针半径在不同结构类型之间有很大差异。溶剂可及表面(SAS)DB在~0.2 Å时变得最佳(确切值对结构和原子半径敏感),此时Δ的平均准确性与基于MS的边界相当。基于相同原子半径均匀增加 的SAS与vdW表面的几何等效性给出了相应的最佳vdW DB。对于小分子,基于BONDI + 0.2 Å半径的最佳vdW DB可以产生至少与基于最佳MS DB一样准确的Δ估计值。此外,在小分子中,用最佳vdW DB计算的成对电荷 - 电荷相互作用实际上与用MS DB计算的相互作用相等,这表明在这种情况下,根据静电能标准,这两个边界实际上是等效的。在小分子以外的结构中,最佳vdW和MS介电边界不等效:即使总Δ相等,对于小蛋白质中的单个原子对,在有溶剂存在时各自的成对静电相互作用最多可相差5 kcal/mol。对于小蛋白质,从最佳MS到最佳vdW DB定义的切换导致的成对静电相互作用的平均降低可以在MS DB定义内通过将溶质介电常数加倍来模拟。然而,使用更高的内部介电常数并不能消除在两个DB定义内计算的成对相互作用之间的大的个体偏差。有人认为,虽然基于MS的介电边界定义在某些类型的实际计算中在物理上更正确,但在其他一些常见情况下选择并不那么明确。

相似文献

1
2
On the Dielectric Boundary in Poisson-Boltzmann Calculations.
J Chem Theory Comput. 2008 Mar;4(3):507-514. doi: 10.1021/ct700319x. Epub 2008 Feb 21.
3
Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field.
J Chem Theory Comput. 2005 May;1(3):484-93. doi: 10.1021/ct049834o.
5
Multidimensional Global Optimization and Robustness Analysis in the Context of Protein-Ligand Binding.
J Chem Theory Comput. 2020 Jul 14;16(7):4669-4684. doi: 10.1021/acs.jctc.0c00142. Epub 2020 Jun 24.
8
Influence of Grid Spacing in Poisson-Boltzmann Equation Binding Energy Estimation.
J Chem Theory Comput. 2013 Aug 13;9(8):3677-3685. doi: 10.1021/ct300765w.

引用本文的文献

1
ROBUSTNESS OF MULTIDIMENSIONAL OPTIMIZATION OUTCOMES: A GENERAL APPROACH AND A CASE STUDY.
Spring Simul Conf. 2020 May;2020. doi: 10.22360/springsim.2020.hpc.004. Epub 2020 May 19.
2
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.
J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10.
3
Inclusion of Water Multipoles into the Implicit Solvation Framework Leads to Accuracy Gains.
J Phys Chem B. 2024 Jun 20;128(24):5855-5873. doi: 10.1021/acs.jpcb.4c00254. Epub 2024 Jun 11.
4
A Closed-Form, Analytical Approximation for Apparent Surface Charge and Electric Field of Molecules.
ACS Omega. 2022 Jul 19;7(30):26123-26136. doi: 10.1021/acsomega.2c01484. eCollection 2022 Aug 2.
6
Multidimensional Global Optimization and Robustness Analysis in the Context of Protein-Ligand Binding.
J Chem Theory Comput. 2020 Jul 14;16(7):4669-4684. doi: 10.1021/acs.jctc.0c00142. Epub 2020 Jun 24.
7
Generalized Born Implicit Solvent Models for Biomolecules.
Annu Rev Biophys. 2019 May 6;48:275-296. doi: 10.1146/annurev-biophys-052118-115325. Epub 2019 Mar 11.
8
Explicit ions/implicit water generalized Born model for nucleic acids.
J Chem Phys. 2018 May 21;148(19):195101. doi: 10.1063/1.5027260.
9
Accuracy Comparison of Generalized Born Models in the Calculation of Electrostatic Binding Free Energies.
J Chem Theory Comput. 2018 Mar 13;14(3):1656-1670. doi: 10.1021/acs.jctc.7b00886. Epub 2018 Feb 15.

本文引用的文献

1
Efficient Computation of the Total Solvation Energy of Small Molecules via the R6 Generalized Born Model.
J Chem Theory Comput. 2012 Jul 10;8(7):2404-11. doi: 10.1021/ct200786m. Epub 2012 Jun 8.
3
Protonation and pK changes in protein-ligand binding.
Q Rev Biophys. 2013 May;46(2):181-209. doi: 10.1017/S0033583513000024.
4
On the Dielectric "Constant" of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi.
J Chem Theory Comput. 2013 Apr 9;9(4):2126-2136. doi: 10.1021/ct400065j. Epub 2013 Mar 13.
6
On the Dielectric Boundary in Poisson-Boltzmann Calculations.
J Chem Theory Comput. 2008 Mar;4(3):507-514. doi: 10.1021/ct700319x. Epub 2008 Feb 21.
7
Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?
Commun Comput Phys. 2013 Jan;13(1):1-12. doi: 10.4208/cicp.270711.140911s. Epub 2012 Jun 12.
8
Charge hydration asymmetry: the basic principle and how to use it to test and improve water models.
J Phys Chem B. 2012 Aug 16;116(32):9776-83. doi: 10.1021/jp305226j. Epub 2012 Aug 7.
9
H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41. doi: 10.1093/nar/gks375. Epub 2012 May 8.
10
Bluues: a program for the analysis of the electrostatic properties of proteins based on generalized Born radii.
BMC Bioinformatics. 2012 Mar 28;13 Suppl 4(Suppl 4):S18. doi: 10.1186/1471-2105-13-S4-S18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验