Suppr超能文献

当增益函数不对称时,在时间不确定性下的运动规划是次优的。

Motor planning under temporal uncertainty is suboptimal when the gain function is asymmetric.

作者信息

Ota Keiji, Shinya Masahiro, Kudo Kazutoshi

机构信息

Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Research Fellow of Japan Society for the Promotion of Science Tokyo, Japan.

Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan.

出版信息

Front Comput Neurosci. 2015 Jul 15;9:88. doi: 10.3389/fncom.2015.00088. eCollection 2015.

Abstract

For optimal action planning, the gain/loss associated with actions and the variability in motor output should both be considered. A number of studies make conflicting claims about the optimality of human action planning but cannot be reconciled due to their use of different movements and gain/loss functions. The disagreement is possibly because of differences in the experimental design and differences in the energetic cost of participant motor effort. We used a coincident timing task, which requires decision making with constant energetic cost, to test the optimality of participant's timing strategies under four configurations of the gain function. We compared participant strategies to an optimal timing strategy calculated from a Bayesian model that maximizes the expected gain. We found suboptimal timing strategies under two configurations of the gain function characterized by asymmetry, in which higher gain is associated with higher risk of zero gain. Participants showed a risk-seeking strategy by responding closer than optimal to the time of onset/offset of zero gain. Meanwhile, there was good agreement of the model with actual performance under two configurations of the gain function characterized by symmetry. Our findings show that human ability to make decisions that must reflect uncertainty in one's own motor output has limits that depend on the configuration of the gain function.

摘要

为了实现最优动作规划,应同时考虑与动作相关的收益/损失以及运动输出的变异性。许多研究对人类动作规划的最优性提出了相互矛盾的观点,但由于它们使用了不同的动作和收益/损失函数,这些观点无法协调一致。分歧可能是由于实验设计的差异以及参与者运动努力的能量成本差异。我们使用了一个同步计时任务,该任务要求在恒定能量成本下进行决策,以测试在收益函数的四种配置下参与者计时策略的最优性。我们将参与者的策略与根据贝叶斯模型计算出的最优计时策略进行了比较,该模型可使预期收益最大化。我们发现在两种具有不对称特征的收益函数配置下,计时策略次优,其中较高的收益与零收益的较高风险相关。参与者通过比最优情况更接近零收益开始/结束时间做出反应,表现出一种风险寻求策略。同时,在两种具有对称特征的收益函数配置下,模型与实际表现有很好的一致性。我们的研究结果表明,人类做出必须反映自身运动输出不确定性的决策的能力存在局限性,这种局限性取决于收益函数的配置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验