Maloney Laurence T, Zhang Hang
Department of Psychology, Center for Neural Science, New York University, New York, NY 10003, United States.
Vision Res. 2010 Nov 23;50(23):2362-74. doi: 10.1016/j.visres.2010.09.031. Epub 2010 Oct 23.
Statistical decision theory (SDT) and Bayesian decision theory (BDT) are closely related mathematical frameworks used to model ideal performance in a wide range of visual and motor tasks. Their elements (gain function, likelihood, prior) are readily interpretable in terms of information available to the observer. We briefly describe SDT and BDT and then review recent work employing them as models of biological perception or action. We emphasize work that employs gain functions and priors as independent or dependent variables. At one extreme, Bayesian decision theory allows the experimenter to compute ideal performance in specific tasks and compare human performance to ideal (Geisler, 1989). No claim is made that visual processing is in any sense "Bayesian". At the other extreme, researchers have proposed Bayesian decision theory as a process model of "perception as Bayesian inference" (Knill & Richards, 1996). We end by discussing how possible ideal models are related to imperfect, actual observers and how the "Bayesian hypothesis" can be tested experimentally.
统计决策理论(SDT)和贝叶斯决策理论(BDT)是密切相关的数学框架,用于对广泛的视觉和运动任务中的理想表现进行建模。它们的元素(增益函数、似然性、先验概率)可以根据观察者可用的信息轻松解释。我们简要描述了SDT和BDT,然后回顾了最近将它们用作生物感知或行动模型的研究工作。我们强调将增益函数和先验概率用作自变量或因变量的研究。在一个极端情况下,贝叶斯决策理论允许实验者计算特定任务中的理想表现,并将人类表现与理想表现进行比较(Geisler,1989)。我们并未声称视觉处理在任何意义上是“贝叶斯式的”。在另一个极端情况下,研究人员提出贝叶斯决策理论作为“感知即贝叶斯推理”的过程模型(Knill & Richards,1996)。我们最后讨论了可能的理想模型与不完美的实际观察者之间的关系,以及“贝叶斯假设”如何通过实验进行检验。