Yasumura Yuki, Pierik Ronald, Kelly Steven, Sakuta Masaaki, Voesenek Laurentius A C J, Harberd Nicholas P
Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.).
Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
Plant Physiol. 2015 Sep;169(1):283-98. doi: 10.1104/pp.15.00233. Epub 2015 Aug 4.
Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants.
陆地植物进化出了适应性调节机制,以确保在与陆地生活相关的环境胁迫下生存。在这里,我们聚焦于乙烯信号通路中调节植物生长发育中胁迫相关变化的组成型三重反应1(CTR1)调节成分的进化。首先,我们比较了苔藓植物小立碗藓(代表早期分化的陆地植物)中的CTR1样蛋白与分化时间更近的石松植物和被子植物物种(包括拟南芥)中的CTR1样蛋白,并鉴定出一个单系CTR1家族。全基因组测序的小立碗藓基因组仅编码该家族的一个成员(PpCTR1L)。接下来,我们比较了PpCTR1L与相关被子植物蛋白的功能。我们发现,与被子植物CTR1蛋白(如拟南芥的AtCTR1)一样,PpCTR1L通过与乙烯受体直接相互作用来调节下游乙烯信号。因此,这些功能可能在苔藓植物与陆地植物谱系分化之前就已存在。然而,我们还发现PpCTR1L出人意料地具有双重功能,还能调节脱落酸(ABA)信号。相比之下,虽然AtCTR1缺乏可检测到的ABA信号功能,但拟南芥在进化过程中获得了另一个与AtCTR1功能不同的同源物。总之,CTR1相关蛋白的作用在陆地植物进化过程中似乎在功能上发生了多样化,被子植物CTR1相关蛋白似乎失去了祖先的ABA信号功能。我们的研究为基因复制和功能分化等分子事件如何促进植物调节机制的适应性进化提供了新的见解。