Cai Lili, Cho In Sun, Logar Manca, Mehta Apurva, He Jiajun, Lee Chi Hwan, Rao Pratap M, Feng Yunzhe, Wilcox Jennifer, Prinz Fritz B, Zheng Xiaolin
Department of Mechanical Engineering, Stanford University, California 94305, USA.
Phys Chem Chem Phys. 2014 Jun 28;16(24):12299-306. doi: 10.1039/c4cp01748j.
Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.
由于杂质掺入和纳米尺度所产生的独特性质,掺杂纳米线(NWs)对于一系列应用至关重要。然而,现有的掺杂方法面临着在纳米尺度上同时控制形态、结晶度、掺杂剂分布和浓度的挑战。在此,我们提出一种可控且可靠的方法,该方法将通用的溶液相化学与快速火焰退火工艺(溶胶 - 火焰法)相结合,用于用钴(Co)掺杂二氧化钛纳米线(TiO₂ NWs)。溶胶 - 火焰掺杂方法不仅保留了TiO₂ NWs的形态和结晶度,还能通过改变钴前驱体溶液的浓度对钴掺杂分布进行精细控制。TiO₂:Co NWs的表征表明,钴掺杂剂呈现2 + 氧化态,并在TiO₂晶格中替代占据钛位点。钴掺杂剂浓度显著影响TiO₂:Co NWs的析氧反应(OER)活性,表面钴含量为12原子百分比的TiO₂:Co NWs表现出最高的OER活性,相对于未掺杂的TiO₂ NWs,过电位降低了0.76 V。TiO₂:Co NWs的这种OER活性增强归因于表面电荷转移动力学的改善和体电导率的增加。