Suppr超能文献

利用 CRISPR/Cas9 在果蝇中进行体内转录激活。

In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.

机构信息

Tsinghua-Peking-National Institute of Biological Sciences Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China Department of Genetics.

Department of Genetics

出版信息

Genetics. 2015 Oct;201(2):433-42. doi: 10.1534/genetics.115.181065. Epub 2015 Aug 5.

Abstract

A number of approaches for Cas9-mediated transcriptional activation have recently been developed, allowing target genes to be overexpressed from their endogenous genomic loci. However, these approaches have thus far been limited to cell culture, and this technique has not been demonstrated in vivo in any animal. The technique involving the fewest separate components, and therefore the most amenable to in vivo applications, is the dCas9-VPR system, where a nuclease-dead Cas9 is fused to a highly active chimeric activator domain. In this study, we characterize the dCas9-VPR system in Drosophila cells and in vivo. We show that this system can be used in cell culture to upregulate a range of target genes, singly and in multiplex, and that a single guide RNA upstream of the transcription start site can activate high levels of target transcription. We observe marked heterogeneity in guide RNA efficacy for any given gene, and we confirm that transcription is inhibited by guide RNAs binding downstream of the transcription start site. To demonstrate one application of this technique in cells, we used dCas9-VPR to identify target genes for Twist and Snail, two highly conserved transcription factors that cooperate during Drosophila mesoderm development. In addition, we simultaneously activated both Twist and Snail to identify synergistic responses to this physiologically relevant combination. Finally, we show that dCas9-VPR can activate target genes and cause dominant phenotypes in vivo, providing the first demonstration of dCas9 activation in a multicellular animal. Transcriptional activation using dCas9-VPR thus offers a simple and broadly applicable technique for a variety of overexpression studies.

摘要

最近已经开发出了几种 Cas9 介导的转录激活方法,从而可以从内源基因组位置过表达靶基因。然而,这些方法迄今为止仅限于细胞培养,并且在任何动物体内都没有证明该技术。涉及最少的单独组件,因此最适合体内应用的技术是 dCas9-VPR 系统,其中,一种核酸酶失活的 Cas9 与高度活跃的嵌合激活结构域融合。在这项研究中,我们在果蝇细胞和体内对 dCas9-VPR 系统进行了表征。我们表明,该系统可用于细胞培养中单基因和多基因靶基因的上调,并且转录起始位点上游的单个向导 RNA 可以激活高水平的靶转录。我们观察到对于任何给定基因,向导 RNA 的效率都存在明显的异质性,并且我们确认向导 RNA 在转录起始位点下游的结合会抑制转录。为了在细胞中证明该技术的一种应用,我们使用 dCas9-VPR 来鉴定 Twist 和 Snail 这两个高度保守的转录因子的靶基因,这两个转录因子在果蝇中胚层发育过程中合作。此外,我们同时激活 Twist 和 Snail,以鉴定对这种生理相关组合的协同反应。最后,我们表明 dCas9-VPR 可以激活体内靶基因并引起显性表型,从而首次证明了 dCas9 在多细胞动物中的激活。使用 dCas9-VPR 的转录激活因此为各种过表达研究提供了一种简单且广泛适用的技术。

相似文献

1
In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
Genetics. 2015 Oct;201(2):433-42. doi: 10.1534/genetics.115.181065. Epub 2015 Aug 5.
2
Optimized strategy for in vivo Cas9-activation in .
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9409-9414. doi: 10.1073/pnas.1707635114. Epub 2017 Aug 14.
3
CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart.
Circ Res. 2020 Jan 3;126(1):6-24. doi: 10.1161/CIRCRESAHA.118.314522. Epub 2019 Nov 15.
4
Transcriptional regulation by CRISPR/dCas9 in common wheat.
Gene. 2022 Jan 10;807:145919. doi: 10.1016/j.gene.2021.145919. Epub 2021 Aug 26.
5
Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
Insect Sci. 2019 Dec;26(6):983-990. doi: 10.1111/1744-7917.12634. Epub 2018 Sep 25.
6
A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning.
Appl Microbiol Biotechnol. 2020 Nov;104(22):9801-9822. doi: 10.1007/s00253-020-10900-9. Epub 2020 Oct 2.
7
CRISPR-assisted transcription activation by phase-separation proteins.
Protein Cell. 2023 Dec 1;14(12):874-887. doi: 10.1093/procel/pwad013.
10
Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
PLoS One. 2022 Jun 28;17(6):e0270008. doi: 10.1371/journal.pone.0270008. eCollection 2022.

引用本文的文献

1
Expression Pattern of the AB1-Gal4 Driver in Third-Instar Larvae.
Int J Mol Sci. 2025 Apr 22;26(9):3923. doi: 10.3390/ijms26093923.
2
A systematic screening assay identifies efficient small guide RNAs for CRISPR activation.
Front Bioeng Biotechnol. 2025 Jan 23;13:1336313. doi: 10.3389/fbioe.2025.1336313. eCollection 2025.
3
Epigenetics and individuality: from concepts to causality across timescales.
Nat Rev Genet. 2025 Jun;26(6):406-423. doi: 10.1038/s41576-024-00804-z. Epub 2025 Jan 9.
5
Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs.
G3 (Bethesda). 2024 Oct 4;14(12). doi: 10.1093/g3journal/jkae238.
6
The MondoA-dependent TXNIP/GDF15 axis predicts oxaliplatin response in colorectal adenocarcinomas.
EMBO Mol Med. 2024 Sep;16(9):2080-2108. doi: 10.1038/s44321-024-00105-2. Epub 2024 Aug 5.
7
Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals.
Int J Mol Sci. 2024 May 11;25(10):5231. doi: 10.3390/ijms25105231.
8
A novel loss-of-function mutant in .
Fly (Austin). 2024 Dec;18(1):2352938. doi: 10.1080/19336934.2024.2352938. Epub 2024 May 13.
9
CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation.
Int J Mol Sci. 2023 Oct 3;24(19):14865. doi: 10.3390/ijms241914865.
10
tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9.
Nat Commun. 2023 Sep 11;14(1):5587. doi: 10.1038/s41467-023-40836-3.

本文引用的文献

2
Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.
Cell. 2015 Mar 12;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub 2015 Mar 5.
3
Highly efficient Cas9-mediated transcriptional programming.
Nat Methods. 2015 Apr;12(4):326-8. doi: 10.1038/nmeth.3312. Epub 2015 Mar 2.
4
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
Cell. 2015 Jan 15;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub 2014 Dec 18.
5
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Nature. 2015 Jan 29;517(7536):583-8. doi: 10.1038/nature14136. Epub 2014 Dec 10.
6
Cas9-based genome editing in Drosophila.
Methods Enzymol. 2014;546:415-39. doi: 10.1016/B978-0-12-801185-0.00019-2.
7
A protein-tagging system for signal amplification in gene expression and fluorescence imaging.
Cell. 2014 Oct 23;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub 2014 Oct 9.
8
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.
9
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.
10
Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76. doi: 10.1073/pnas.1405500111. Epub 2014 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验