Suppr超能文献

优化体内 Cas9 激活策略。

Optimized strategy for in vivo Cas9-activation in .

机构信息

Department of Genetics, Harvard Medical School, Boston, MA 02115.

Federal University of Sao Joao del Rei, Divinopolis, Minas Gerais 36301, Brazil.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9409-9414. doi: 10.1073/pnas.1707635114. Epub 2017 Aug 14.

Abstract

While several large-scale resources are available for in vivo loss-of-function studies in , an analogous resource for overexpressing genes from their endogenous loci does not exist. We describe a strategy for generating such a resource using Cas9 transcriptional activators (CRISPRa). First, we compare a panel of CRISPRa approaches and demonstrate that, for in vivo studies, dCas9-VPR is the most optimal activator. Next, we demonstrate that this approach is scalable and has a high success rate, as >75% of the lines tested activate their target gene. We show that CRISPRa leads to physiologically relevant levels of target gene expression capable of generating strong gain-of-function (GOF) phenotypes in multiple tissues and thus serves as a useful platform for genetic screening. Based on the success of this CRISRPa approach, we are generating a genome-wide collection of flies expressing single-guide RNAs (sgRNAs) for CRISPRa. We also present a collection of more than 30 Gal4 > UAS:dCas9-VPR lines to aid in using these sgRNA lines for GOF studies in vivo.

摘要

尽管有几个大型资源可用于体内功能丧失研究,但不存在用于从内源性基因座过表达基因的类似资源。我们描述了一种使用 Cas9 转录激活剂(CRISPRa)生成此类资源的策略。首先,我们比较了一组 CRISPRa 方法,并证明对于体内研究,dCas9-VPR 是最理想的激活剂。接下来,我们证明该方法具有可扩展性和高成功率,因为 >75%的测试品系激活了其靶基因。我们表明 CRISPRa 导致靶基因表达的生理相关水平,能够在多种组织中产生强烈的功能获得(GOF)表型,因此是遗传筛选的有用平台。基于这种 CRISPRa 方法的成功,我们正在生成一个表达 CRISPRa 单引导 RNA(sgRNA)的全基因组果蝇集合。我们还提供了超过 30 个 Gal4 > UAS:dCas9-VPR 品系的集合,以帮助在体内进行 GOF 研究中使用这些 sgRNA 品系。

相似文献

1
Optimized strategy for in vivo Cas9-activation in .
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9409-9414. doi: 10.1073/pnas.1707635114. Epub 2017 Aug 14.
2
Next-generation CRISPR/Cas9 transcriptional activation in using flySAM.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4719-4724. doi: 10.1073/pnas.1800677115. Epub 2018 Apr 16.
3
In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
Genetics. 2015 Oct;201(2):433-42. doi: 10.1534/genetics.115.181065. Epub 2015 Aug 5.
5
A large-scale resource for tissue-specific CRISPR mutagenesis in .
Elife. 2020 Feb 13;9:e53865. doi: 10.7554/eLife.53865.
6
Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
Genes (Basel). 2023 Apr 13;14(4):906. doi: 10.3390/genes14040906.
7
Perspectives on gene expression regulation techniques in Drosophila.
J Genet Genomics. 2019 Apr 20;46(4):213-220. doi: 10.1016/j.jgg.2019.03.006. Epub 2019 Apr 17.
8
CRISPR-mediated transcriptional activation with synthetic guide RNA.
J Biotechnol. 2020 Aug 10;319:25-35. doi: 10.1016/j.jbiotec.2020.05.005. Epub 2020 May 27.
9
Enhanced Efficiency of flySAM by Optimization of sgRNA Parameters in .
G3 (Bethesda). 2020 Dec 3;10(12):4483-4488. doi: 10.1534/g3.120.401614.
10
Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
PLoS One. 2022 Jun 28;17(6):e0270008. doi: 10.1371/journal.pone.0270008. eCollection 2022.

引用本文的文献

1
Cytotoxicity of activator expression in CRISPR-based transcriptional activation systems.
Nat Commun. 2025 Aug 29;16(1):8071. doi: 10.1038/s41467-025-63570-4.
2
Cell fate ratios are encoded by transcriptional dynamics in the Drosophila retina.
Curr Biol. 2025 Jun 23;35(12):2946-2959.e5. doi: 10.1016/j.cub.2025.05.037. Epub 2025 Jun 10.
4
Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment.
Mol Ther. 2024 Dec 4;32(12):4208-4234. doi: 10.1016/j.ymthe.2024.10.029. Epub 2024 Oct 28.
6
Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs.
G3 (Bethesda). 2024 Oct 4;14(12). doi: 10.1093/g3journal/jkae238.
7
On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies.
Mol Ther. 2024 Nov 6;32(11):3793-3807. doi: 10.1016/j.ymthe.2024.08.016. Epub 2024 Aug 22.
8
Epigenome editing technologies for discovery and medicine.
Nat Biotechnol. 2024 Aug;42(8):1199-1217. doi: 10.1038/s41587-024-02320-1. Epub 2024 Jul 29.
9
HyperCas12a enables highly-multiplexed epigenome editing screens.
bioRxiv. 2024 Jul 9:2024.07.08.602263. doi: 10.1101/2024.07.08.602263.

本文引用的文献

1
Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs.
Nat Methods. 2016 Oct;13(10):852-4. doi: 10.1038/nmeth.3972. Epub 2016 Sep 5.
2
Comparison of Cas9 activators in multiple species.
Nat Methods. 2016 Jul;13(7):563-567. doi: 10.1038/nmeth.3871. Epub 2016 May 23.
4
The Transgenic RNAi Project at Harvard Medical School: Resources and Validation.
Genetics. 2015 Nov;201(3):843-52. doi: 10.1534/genetics.115.180208. Epub 2015 Aug 28.
5
In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
Genetics. 2015 Oct;201(2):433-42. doi: 10.1534/genetics.115.181065. Epub 2015 Aug 5.
6
Highly efficient Cas9-mediated transcriptional programming.
Nat Methods. 2015 Apr;12(4):326-8. doi: 10.1038/nmeth.3312. Epub 2015 Mar 2.
7
Improved and expanded Q-system reagents for genetic manipulations.
Nat Methods. 2015 Mar;12(3):219-22, 5 p following 222. doi: 10.1038/nmeth.3250. Epub 2015 Jan 12.
8
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Nature. 2015 Jan 29;517(7536):583-8. doi: 10.1038/nature14136. Epub 2014 Dec 10.
9
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.
10
Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos.
Dev Cell. 2014 Oct 13;31(1):114-27. doi: 10.1016/j.devcel.2014.07.027. Epub 2014 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验