Bromke Mariusz A, Hesse Holger
Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
Springerplus. 2015 Aug 4;4:391. doi: 10.1186/s40064-015-1163-8. eCollection 2015.
Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. The sulfate assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethylsulfoniopropionate. To obtain an insight into the localization and organization of the sulfur metabolism pathways we surveyed the genome of Thalassiosira pseudonana-a model organism for diatom research. We have identified and annotated genes for enzymes involved in respective pathways. Protein localization was predicted using similarities to known signal peptide motifs. We performed detailed phylogenetic analyses of enzymes involved in sulfate uptake/reduction and methionine metabolism. Moreover, we have found in up-stream sequences of studied diatoms methionine biosynthesis genes a conserved motif, which shows similarity to the Met31, a cis-motif regulating expression of methionine biosynthesis genes in yeast.
硅藻是单细胞藻类,约占全球碳固定量的20%。与具有原始质体的藻类相比,它们通过二次内共生进化而来,具有复杂的细胞结构和代谢。硫酸盐同化和蛋氨酸合成途径为蛋白质合成以及一系列代谢物(如二甲基磺基丙酸酯)的合成提供含硫氨基酸。为了深入了解硫代谢途径的定位和组织,我们对硅藻研究的模式生物——拟南芥的基因组进行了调查。我们已经鉴定并注释了参与各个途径的酶的基因。利用与已知信号肽基序的相似性预测蛋白质定位。我们对参与硫酸盐摄取/还原和蛋氨酸代谢的酶进行了详细的系统发育分析。此外,我们在研究的硅藻蛋氨酸生物合成基因的上游序列中发现了一个保守基序,它与Met31相似,Met31是酵母中调节蛋氨酸生物合成基因表达的顺式基序。