Touati Sandra A, Wassmann Katja
Institut de Biologie Paris Seine (IBPS), UMR7622, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.
CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, France.
Chromosoma. 2016 Jun;125(2):321-35. doi: 10.1007/s00412-015-0536-7. Epub 2015 Aug 11.
The generation of a viable, diploid organism depends on the formation of haploid gametes, oocytes, and spermatocytes, with the correct number of chromosomes. Halving the genome requires the execution of two consecutive specialized cell divisions named meiosis I and II. Unfortunately, and in contrast to male meiosis, chromosome segregation in oocytes is error prone, with human oocytes being extraordinarily "meiotically challenged". Aneuploid oocytes, that are with the wrong number of chromosomes, give rise to aneuploid embryos when fertilized. In humans, most aneuploidies are lethal and result in spontaneous abortions. However, some trisomies survive to birth or even adulthood, such as the well-known trisomy 21, which gives rise to Down syndrome (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012). A staggering 20-25 % of oocytes ready to be fertilized are aneuploid in humans. If this were not bad enough, there is an additional increase in meiotic missegregations as women get closer to menopause. A woman above 40 has a risk of more than 30 % of getting pregnant with a trisomic child. Worse still, in industrialized western societies, child birth is delayed, with women getting their first child later in life than ever. This trend has led to an increase of trisomic pregnancies by 70 % in the last 30 years (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012; Schmidt et al. in Hum Reprod Update 18:29-43, 2012). To understand why errors occur so frequently during the meiotic divisions in oocytes, we review here the molecular mechanisms at works to control chromosome segregation during meiosis. An important mitotic control mechanism, namely the spindle assembly checkpoint or SAC, has been adapted to the special requirements of the meiotic divisions, and this review will focus on our current knowledge of SAC control in mammalian oocytes. Knowledge on how chromosome segregation is controlled in mammalian oocytes may help to identify risk factors important for questions related to human reproductive health.
一个有活力的二倍体生物体的产生依赖于具有正确染色体数目的单倍体配子、卵母细胞和精母细胞的形成。基因组减半需要进行两个连续的特殊细胞分裂,即减数分裂I和II。不幸的是,与雄性减数分裂不同,卵母细胞中的染色体分离容易出错,人类卵母细胞在减数分裂方面面临极大挑战。染色体数目错误的非整倍体卵母细胞受精后会产生非整倍体胚胎。在人类中,大多数非整倍体是致命的,会导致自然流产。然而,一些三体综合征患者能够存活至出生甚至成年,比如著名的21三体综合征,它会导致唐氏综合征(长冈等人,《自然综述:遗传学》,2012年,第13卷,第493 - 504页)。在人类中,准备受精的卵母细胞中有惊人的20% - 25%是非整倍体。如果这还不够糟糕的话,随着女性接近更年期,减数分裂错误分离的情况会进一步增加。40岁以上的女性怀有三体患儿的风险超过30%。更糟糕的是,在西方工业化社会,生育年龄推迟,女性生育第一个孩子的年龄比以往任何时候都晚。这一趋势导致在过去30年中三体妊娠增加了70%(长冈等人,《自然综述:遗传学》,2012年,第13卷,第493 - 504页;施密特等人,《人类生殖更新》,2012年,第18卷,第29 - 43页)。为了理解为什么在卵母细胞减数分裂过程中错误如此频繁地发生,我们在此回顾控制减数分裂过程中染色体分离的分子机制。一种重要的有丝分裂控制机制,即纺锤体组装检查点或SAC,已经适应了减数分裂的特殊要求,本综述将聚焦于我们目前对哺乳动物卵母细胞中SAC控制的了解。了解哺乳动物卵母细胞中染色体分离是如何被控制的,可能有助于识别与人类生殖健康相关问题的重要风险因素。